

2023 Water System Assessment Report Cornwallis Water Treatment Plant

Final Report

230822.00 • September 2023

0 A	FINAL DRAFT		BB BB	2023-09-14 2023-06-30	M.L. ML
	Issue or I	Revision	Reviewed By:	Date	Issued By:
С	BCL	This document was prepare herein. The material and inf document reflects CBCL Lin judgment based on the info time of preparation. Any us reliance on its content by th responsibility of the third p no responsibility for any da of third party use of this do	formation in the nited's opinion and best ormation available at the e of this document or nird parties is the arty. CBCL Limited accepts mages suffered as a result	REGISTER B. J	DFESSION THE E:sept. 14, 2023 BICKERTON 11131 OF NOVA SCOT

Project No. 230822.00

Platinum member

September 14th, 2023

Mr. Jim Young, P.Eng. Director of Municipal Operations Municipality of the County of Annapolis 752 St. George Street Annapolis Royal, NS B0S 1A0

Dear Mr. Young:

RE: Cornwallis WTP 2023 Water System Assessment Report

Please find enclosed the 2023 System Assessment Report (SAR) for the Cornwallis Water Treatment Plant (WTP) completed by CBCL Limited (CBCL) on behalf of the Municipality of the County of Annapolis (MCA). This report includes the specific requirements of a SAR as outlined in the Nova Scotia Environment and Climate Change (NSECC) *Approval to Operate* for a WTP.

Yours very truly,

CBCL Limited

Ben Bickerton, M.A.Sc., P.Eng. Process Engineer Direct: (902) 492-7979, Ext. 2271 E-Mail: bbickerton@cbcl.ca

Project No: 230822.00

This document was prepared for the party indicated herein. The material and information in the document reflects CBCL Limited's opinion and best judgment based on the information available at the time of preparation. Any use of this document or reliance on its content by third parties is the responsibility of the third party. CBCL Limited accepts no responsibility for any damages suffered as a result of third party use of this document.

Contents

1 Prc	oject		1
1.1	Introdu	iction	1
1.2	Purpos	e	1
2 Cha	aractei	rization of the Water Source	3
2.1	Source	Description & Schematic	3
	2.1.1	Back-up Water Supplies	
2.2	Microb	ial Risks	4
	2.2.1	Surface Water Sources	4
	2.2.2	Groundwater Sources	5
2.3	Chemio	cal & Physical Risks	5
	2.3.1	Disinfection By-Products	5
	2.3.2	Lead & Corrosion Control	6
	2.3.3	Guidelines for Canadian Drinking Water Quality	9
	2.3.4	Guidelines for Monitoring Public Drinking Water Supplies	9
	2.3.5	Source Water Protection Plan Monitoring	10
	2.3.6	Cyanobacteria	11
2.4	Filter B	ackwash Water	. 12
2.5	Source	Quantity	. 12
2.6	Source	Water Protection Plan	. 13
2.7	Conclu	sion & Recommendations	. 14
	2.7.1	Treatment Requirements to Protect Against Pathogenic Organisms	14
	2.7.2	Disinfection By-Products	15
	2.7.3	Lead & Corrosion Control	15
	2.7.4	Guidelines for Canadian Drinking Water Quality	16
	2.7.5	Guidelines for Monitoring Public Drinking Water Supplies	16
	2.7.6	Source Water Protection Plan Monitoring	16
	2.7.7	Filter Backwash Water Discharge	16
	2.7.8	Source Quantity	17
	2.7.9	Source Water Protection Plan	17

3 Tre	atmer	nt Processes, Facilities, & Equipment	18
3.1	Treatm	nent Process	18
	3.1.1	Treatment Process Schematic	18
	3.1.2	Turbidity Levels & Associated Criteria	19
	3.1.3	Membrane Filtration	23
	3.1.4	Primary Disinfection	23
	3.1.5	Secondary Disinfection	25
	3.1.6	Other Critical Processes	26
	3.1.7	Waste Streams	26
3.2	Distrib	ution Water Quality	27
	3.2.1	Chlorine Residual Levels	27
	3.2.2	Microbial Water Quality	27
	3.2.3	Turbidity	28
	3.2.4	Cross Connection Control Program	28
	3.2.5	Other Distribution System Monitoring Programs	28
3.3	On-Site	e Inspection	
3.4	Conclu	ision & Recommendations	
	3.4.1	FIltration	29
	3.4.2	Membranes	29
	3.4.3	Primary Disinfection	29
	3.4.4	Secondary Disinfection	29
	3.4.5	Other Critical Processes	29
	3.4.6	Waste Streams	29
	3.4.7	Distribution Water Quality	30
	3.4.8	On-Site Inspection	31
4 Op	eratio	ns, Monitoring, & Management	32
4.1	Operat	tions & Maintenance	
4.2	Monito	oring & Reporting	32
	4.2.1	Review of Recent Submitted Annual Report	35
4.3	Manag	gement	35
4.4		ision & Recommendations	
	4.4.1	Operation & Maintenance	35
	4.4.2	Monitoring & Reporting	

	4.4.3	Management	36
5 Abi	lity to	Comply	37
5.1	Summa	ıry	37
	5.1.1	Source Water Characterization	.37
	5.1.2	Distribution System Water Quality	38
	5.1.3	Operations, Monitoring, & Management	.39
	5.1.4	Recommendations	.39
5.2	Report	Preparation	42
	5.2.1	Engineer's Declaration	.42

Appendices

- A Tables Required by the Terms of References
- B Watershed Boundary Plan
- C Distribution Map
- D Corrosion Control Program Results
- E Last Round of Sampling Data for *GCDWQ*
- F Last Round of Sampling Data for *GMPDWS*
- G Approval to Operate
- H Approval to Withdrawal
- I Source Water Protection Plan Meeting Minutes
- J Standard Operating Procedures for Disinfection
- K Schematic of the Treatment & Disinfection Process
- M Terms of Reference Checklist

1 Project

1.1 Introduction

The objective of this System Assessment Report (SAR) is to verify that the operation, supply, and distribution of water provided by the Cornwallis Water Treatment Plant (WTP) complies with the environmental standards for safe drinking water as outlined in the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems* (June 2022). This report follows the Terms of Reference provided by Nova Scotia Environment and Climate Change (NSECC). In addition to verifying the required performance, this report will identify any sources of concern and provide appropriate recommendations.

The overall study area includes the Cady Lake watershed source, treatment plant, storage and distribution facilities which are owned and operated by the Municipality of the County of Annapolis (MCA), to provide drinking water to residents of Cornwallis Park. Infrastructure included in the municipal drinking water system includes:

- Cady Lake and various water bodies in the Cady Lake Source Water Protection Area.
- Head Pond dam and raw water transmission main.
- Raw water reservoir.
- Cornwallis WTP.
- Treated water storage reservoir.
- Distribution watermains.

1.2 Purpose

CBCL Limited (CBCL) has been engaged to complete the 2023 SAR for the MCA to verify that the system meets the requirements to comply with the current standards outlined by NSECC. The previous SAR for the Cornwallis system was completed in April 2013.

This report, prepared by CBCL, verifies that the WTP can:

- Meet current environmental standards, which are frequently updated and enhanced for public health protection.
- Meet the minimum requirements set out in the Nova Scotia Treatment Standards for Municipal Drinking Water Systems.
- Demonstrate performance with disinfection criteria.
- Demonstrate performance with turbidity criteria.

- Demonstrate that online equipment is in place and appropriately alarmed to continuously monitor chlorine residual, individual filter effluent, and all parameters related to other primary disinfectants.
- Confirm that waste streams generated by treatment facilities are adequately managed.

This report is organised into four sections as follows:

- 1 Characterization of the Water Source.
- 2 Treatment Processes, Facilities and Equipment.
- 3 Operations, Monitoring and Management.
- 4 Ability to Comply.

2 Characterization of the Water Source

This section of the SAR characterizes the source water for the Cornwallis WTP by outlining the source water and reporting on the following:

- 1 Microbial risks.
- 2 Chemical and physical risks.
 - a. Lead and corrosion control.
 - b. Guidelines for Canadian Drinking Water Quality (GCDWQ).
 - c. Guideline for Monitoring Public Drinking Water Supplies (GMPDWS).
 - d. Source Water Protection Plan (SWPP) monitoring.
- 3 Filter backwash waste.
- 4 Source quantity.
- 5 SWPP.

2.1 Source Description & Schematic

Throughout this report and in previous reports, Lake Cady is referenced as the primary source of drinking water supply for the Cornwallis WTP; however, the 2015 source water protection plan (SWPP) describes that the actual source of supply, a dammed head pond on the West Moose River, is typically replenished more from other sources within the watershed (including 2,260 hectares of catchment area which make up the headwaters of West Moose River as well as Potter Lake, Mud Lake, and Shell Camp Lake). The relative contributions to the head pond from Lake Cady versus other sources within the watershed are variable depending on rainfall and water levels. Water from the West Moose River dam flows by gravity to the raw water storage pond located off South Broadway Avenue in Cornwallis. The total raw water transmission main is reportedly 10.8 km in length, but complete details of the routing of the transmission main were not available to confirm. The approximate routing is north-northeast from the reservoir (assumed to be along Clementsport Road) in a 60-year-old steel pipe approximately 6.6 km to the Clementsport Dam, before connecting to a 2.9 km section of PVC watermain constructed in 1999/200, which connects to an existing main from an area near the municipal wastewater treatment facility to the raw water reservoir. The raw water reservoir itself has a capacity of 27,000 m³.

2.1.1 Back-up Water Supplies

The Cornwallis WTP does not have a back-up water supply. Manual valves outside the WTP can be manipulated to bypass the raw water reservoir, feeding the WTP directly from the raw water transmission main, if there is a problem in the raw water reservoir itself.

2.2 Microbial Risks

The microbial treatment requirements for municipal water treatment systems supplied with surface water, such as Lake Cady, include the following:

- ▶ 3.0-log reduction in protozoa (e.g., *Cryptosporidium* oocysts and *Giardia* cysts).
- 4.0-log reduction in viruses.

Log reductions of microbial agents must be achieved by a combination of engineered filtration and disinfection. Disinfection must provide a minimum of 0.5-log inactivation of *Giardia*.

2.2.1 Surface Water Sources

The raw water supply originates from a surface water source and is required to meet a minimum 3.0-log reduction for protozoa (e.g., *Cryptosporidium* oocysts and *Giardia* cysts) and a minimum of 4.0-log reduction of viruses according to the outlined requirements in *the Nova Scotia Treatment Standards for Municipal Drinking Water Systems* (2022).

The Cornwallis WTP utilizes an engineered filtration and disinfection process consisting of coagulation, flocculation, dissolved air flotation (DAF), multimedia gravity filters, and chlorine disinfection to achieve the required log reductions. The *Nova Scotia Treatment Standards for Municipal Drinking Water Systems* assigns conventional filtration facilities with a 3.0-log removal credits for protozoa (e.g., *Cryptosporidium* oocysts and *Giardia* cysts), and 2.0-log removals for viruses. Remaining log reductions for *Giardia* and viruses are met using free chlorine (sodium hypochlorite). Table 2.1 provides the minimum pathogen reduction credits achieved at the Cornwallis WTP by unit process.

Treatment	Protozo	a	Virus	Individual Filter Turbidity Limit
Technology	Cryptosporidium	Giardia	virus	individual Filter Turbluity Limit
Conventional Filtration	3.0-log	3.0-log	2.0-log	 Shall be less than 0.2 NTU 95% of the time in each calendar month. Shall not exceed 1.0 NTU at any time. Filter-to-waste until below 0.2 NTU.
Chlorination		0.5-log	2.0-log	

Table 2.1: Minimum Pathogen Reduction Credits Achieved at the Cornwallis WTP

Minimum			
Total	3.0-log	3.0-log	4.0-log
Reduction			

2.2.1.1 Bacterial Quality

The existing *Approval to Operate* (Schedule A) does not require raw water bacteriological testing for total coliforms and *E. coli* at the Cornwallis WTP, and as such, no raw water quality data is available to review. As the plant treats surface water, it is assumed that colony-forming bacteria is regularly present in the source water.

2.2.1.2 Protozoa Water Quality

Schedule A within the existing *Approval to Operate* document prescribes that the minimum sampling frequency requirements to test for the presence of protozoa (*Cryptosporidium* oocysts and *Giardia* cysts) in the raw water is at the request of NSECC. To date, no raw water protozoa quality testing has been requested. The prevalence of protozoa in the source water is unknown, the plant is designed to treat surface water and as such the assumption is that protozoa may be present at any given time.

2.2.1.3 Viral Water Quality

Schedule A within the existing *Approval to Operate* document outlines that the minimum sampling frequency requirements to test for the presence of viruses in the raw water is at the request of NSECC. To date, no raw water virus testing has been requested. No information on viral water quality is available; it is assumed that viruses may be present in the source water at any given time.

2.2.2 Groundwater Sources

There are no groundwater sources utilized by the Cornwallis WTP.

2.3 Chemical & Physical Risks

2.3.1 Disinfection By-Products

Trihalomethanes (THMs) and Haloacetic Acids (HAAs) levels are currently monitored on a quarterly basis at three different locations within the distribution system to establish Locational Running Annual Averages (LRAAs). The sample locations are as follows:

- Site A: Cornwallis Wastewater Treatment Plant (WWTP).
- Site B: Annapolis Basin Maintenance.
- Site C: 490 South Broadway Ave (Water storage tank).

Site C represents the entry point to the distribution system. Site A was selected due to its long retention time at the distal end of the system . Site C was selected to represent the

central part of the distribution system. The number of sampling locations is adequate for the Cornwallis WTP. The mapped locations of the Disinfection By-Product (DBP) sampling points are presented in Appendix C.

Site A does not adequately represent the distal end of the distribution system. MCA should switch this sampling location to ZURI Canada located on Burns Hill Road, where distribution turbidity, chlorine residual and bacteria are currently sampled. This is the farthest area served by the WTP and would, therefore, have the longest retention time.

2.3.1.1 Trihalomethanes

THM concentration results for 2022 are provided in Table A.3 (Appendix A). THM levels observed in the distribution system complied with the LRAA maximum of 100 μ g/L.

2.3.1.2 Haloacetic Acids

HAA5 concentration results for 2022 are provided in Table A.3 (Appendix A). HAA5 levels observed in the distribution system complied with the LRAA maximum of 80 μ g/L.

2.3.1.3 Other Disinfectant By-Products

Other DBPs listed in the NSECC Terms of Reference include Bromate, Chlorate, Chlorite, and N-Nitroso dimethylamine (NDMA). The Cornwallis WTP utilizes sodium hypochlorite for primary and secondary disinfection, therefore, monitoring for these other DBPs is not required since sodium hypochlorite is not stored for more than three months.

2.3.2 Lead & Corrosion Control

2.3.2.1 Lead

MCA has established a Lead and Copper Sampling Program. The purpose of this program is to implement consistent sampling of lead in residential buildings to assess public exposure to lead, as well as to evaluate the WTP's Corrosion Control Program.

The Lead Sampling Program outlines the sample locations and provides the following sections:

- Collecting Samples for Lead and Copper.
 - Sample Protocol and Number of Samples.
 - o Sample Information.
- Notification and Investigation Procedures.
- Taking Action.
- Public Information and Communication Plan.

The *Guidelines for Canadian Drinking Water Quality* (*GCDWQ*) sets the Maximum Acceptable Concentration (MAC) of 0.005 mg/L for total lead. According to the *Requirements for Lead*

and Copper Management, the minimum number of sample locations is determined by the current serviced population. Table 2.2 displays the ranges for the minimum number of sample locations based on serviced population.

Number of People Served	Number of Sample Locations (Annual)
≤500	5
501-3,300	10
3,301-10,000	20
10,001-100,000	30
>100,000	50

Table 2.2: Minimum Number of Sample Locations for Lead and Copper Sampling

As of 2022, the Cornwallis system serves approximately 750 people, therefore, 10 locations are required to comply with the Lead and Copper Sampling Program. MCA sampled four residential locations for lead, which is not in compliance with the minimum number of sample locations required.

Sampling occurred in June 2022 for both lead and copper. Copper was re-tested in July 2022. 1L Random Daytime Samples (RDT) were collected from the kitchen of residences and sent to a third-party lab for analysis. Sample locations, dates, and results for 2022 are provided in Table 2.3 and Table 2.4.

Table 2.3: Lead & Copper Sampling Locations & Results

Sample Date	Address	Lead Results (µg/L)	Copper Results (µg/L)
06/14/2022	90 Hillside Drive	<0.5	9
06/14/2022	406 Dingle Rd.	<0.5	5
06/14/2022	149 Topsail Ave.	<0.5	19
06/14/2022	108 Old School Hill.	<0.5	7

Table 2.4: Copper Sampling Locations & Results

Sample Date	Address	Copper Results (µg/L)
07/06/2022	90 Hillside Drive	4
07/06/2022	406 Dingle Rd.	2
07/06/2022	149 Topsail Ave.	17
07/06/2022	108 Old School Hill.	3

The 2022 Lead and Copper Sampling Program results all indicate lead concentrations are below the MAC limit of 5 μ g/L, and copper concentrations are below the MAC limit of 2,000 μ g/L.

Residents were notified about potential lead and copper testing by word of mouth, and as a note on their water bills in 2022. The information on the water bill notice did not meet the minimum requirements set by section 3 in the NSECC *Requirements for Lead and Copper Management* and MCA was unable to obtain 10 residential spots to sample. Due to this, MCA is not in compliance with the current *Approval to Operate*.

Moving forward, MCA should ensure information communicated to residents for participation in the program meets the minimum requirements set in section 3 of the *Requirements for Lead and Copper Management*. Clarification from NSECC on lead and copper sampling requirements should be requested and an updated Approval to Operate with current sampling requirements should be provided.

2.3.2.2 Corrosion Control

Corrosion control inhibitors in the form of a zinc orthophosphate blend, are injected into the process stream prior to distribution.

The Cornwallis WTP's *Approval to Operate* (Schedule A) includes requirements for a Corrosion Control Monitoring Program, including sampling for various parameters on a quarterly basis for two consecutive years. Sampling parameters include the following:

- ▶ pH.
- Alkalinity.
- Conductivity.
- Temperature.
- Dissolved oxygen.
- Chlorine residual.
- Corrosion inhibitor residual

The sampling locations and frequency outlined in the *Approval to Operate* indicates that a total of three sampling sites are required (one leaving the WTP and two in the distribution system). MCA's 2022 Annual Sampling Plan included these parameters (with the exception of corrosion inhibitor residual) under Section 2.1.7 – Corrosion Monitoring Program, but no results were included in the 2022 Annual Report.

Currently no comprehensive document outlining the Corrosion Control Plan has been developed. No sampling results for the parameters identified in the Approval to Operate and the Annual Sampling Plan were available for review. A Corrosion Control Plan should be developed and should include a detailed sampling plan, action limits for corrosion monitoring parameters, and description of follow-up actions. If water is deemed non-corrosive from sampling results, a request to NSECC for a reduction in sampling frequency can be made.

2.3.3 Guidelines for Canadian Drinking Water Quality

All parameters with associated MACs listed in the *GCDWQ* are required to be analyzed from a raw and treated water sample every five years. The most recent rounds of *GCDWQ* compliance sampling were completed on the following dates:

- Sample Date#1: August 30, 2016.
- Sample Date #2: July 27, 2021.

The last round of provided sampling results, are provided in Appendix E. All raw and treated water samples were in compliance with the MACs for health-related parameters of the *GCDWQ* in 2021, with the exception of manganese. Raw and treated water parameters including total iron, pH, and turbidity exceeded the Aesthetic Objective (AO) values as presented in Table 2.5.

Parameter	<i>GCDWQ</i> Sample Date/Result July 2021	Guideline
Total Iron (Raw Water)	1.0 mg/L	AO: 0.3 mg/L
Total Manganese (Raw Water)	0.153 mg/L	AO: 0.02 mg/L
True Color (Raw Water)	92.1 TCU	AO: 15 TCU
pH (Raw Water)	6.67	AO: 7.0-10.5
Turbidity (Finished Water)	1.1	AO: 1 NTU
Turbidity (Raw Water)	2.0	AO: 1 NTU

Table 2.5: Parameters Exceeding GCDWQ Guidelines.

The Cornwallis WTP has commenced remedial measures to ensure exceedances are identified and investigated. The next round of sampling will be completed in 2027 to meet the minimum requirement of one sampling event every five years.

2.3.4 Guidelines for Monitoring Public Drinking Water Supplies

The *Nova Scotia Treatment Standards Municipal Drinking Water Systems* requires that municipal water utilities monitor water quality for the parameters listed in the *GMPDWS*. As per the *Approval to Operate*, the *GMPDWS* samples should be collected and tested annually in raw and treated water. The last round of sampling results from July 2022 are provided in Appendix F.

All raw and treated water samples were in compliance with the MACs for health-related parameters of the *GCDWQ* in 2022, with the exception of manganese. Raw and treated water parameters including total iron, pH, and turbidity exceeded the Aesthetic Objective (AO) values as presented in Table 2.6.

Table 2.6: Parameters Exceeding GMPDWS Guidelines

Parameter	<i>GMPDWS</i> Sample Date/Result July 2022	Guideline
Total Iron (Finished Water)	0.65 mg/L	AO: 0.3 mg/L
Total Manganese (Finished Water)	0.133 mg/L	AO: 0.02 mg/L
pH (Raw Water)	6.41	AO: 7.0-10.5
Turbidity (Finished Water)	2.3	AO: 1 NTU
Turbidity (Raw Water)	4.2	AO: 1 NTU

The Cornwallis WTP has commenced remedial measures to ensure exceedances are identified and investigated. The next round of compliance testing is scheduled to occur in July 2023.

Health Canada added a health-based maximum for total manganese of 120 µg/L in 2019. NSECC updated the *GMPDWS* to reflect this change and requires monitoring of total manganese in raw, treated, and distribution system samples. As per the *Approval to Operate*, manganese is sampled quarterly. No documentation of quarterly manganese sampling was provided. As per the 2022 Annual Report the treated water sample for manganese exceeded the *GCDWQ* MAC of 120 µg/L.

MCA should begin sampling for manganese on a quarterly basis for both raw and treated samples to be in compliance with the current *Approval to Operate*.

2.3.5 Source Water Protection Plan Monitoring

The Lake Cady SWPP outlines the recommended monitoring plan and possible sources of contaminants as point sources and non-point sources. A list of the parameters, sample locations, and the associated sampling schedule is provided in Table 2.7.

	Locations			
Parameter	Outlet of Cady Lake (low-density residential area)	Outlets of Potter Lake, Shell Camp Lake, & Mud Lake	Raw water before treatment	
Turbidity	Quarterly	Semi-annual	Daily	
Conductivity	Quarterly	Quarterly	Annual	
рН	Quarterly	Quarterly	Daily	
Total Coliform and <i>E. coli</i>	Semi-annual	Semi-annual	Weekly	
Nitrate	Semi-annual	Semi-annual	Annual	
Chloride	Semi-annual	Semi-annual	Semi-annual	
Total Dissolved Solids (TDS)	Annual	Annual	Annual	

Table 2.7 Cornwallis Monitoring Stations & Sampling Schedule

Pesticides	Annual	Annual	Annual
Polychlorinated Biphenyls (PCBs)	Annual	Annual	Annual
Volatile Organic Compounds (VOCs)	Annual	N/A	Annual
Total Petroleum Hydrocarbons	Annual	N/A	Annual

The sampling protocols for the active watersheds provides sufficient data and information needed to constantly evaluate the effectiveness of the SWPP. The sampling network provides MCA with a strong early warning system for potential contamination or changes in source water quality.

Currently MCA has not implemented these parameters into regular sampling procedures. As per the Annual Sampling Plan and Annual report, no sampling occurs at the outlets of Potter Lake, Shell Camp Lake and Mud Lake. These watersheds all contribute to the dammed head pond on West Moose River and would have significant impact on source water quality. MCA should begin sampling all parameters listed at all locations to be in compliance with current *Approval to Operate*. The SWPP monitoring program locations should also be reviewed and updated to select sites that may better reflect the active watersheds that are contributing to the source water.

2.3.6 Cyanobacteria

A monitoring and protection program against the risk of cyanobacteria is required as per the *Approval to Operate*. Currently no cyanobacteria monitoring is implemented at the plant.

In the event of a bloom, the conventional water treatment process will remove the majority of cyanobacterial biomass through the DAF and filtration processes. Any intracellular toxins (contained within the biomass) will be removed, however, dissolved cyanotoxins (extracellular) are not readily reduced in conventional surface water treatment processes. Free chlorine is moderately effective for the oxidation of microcystin and is in use at the facility. As a result, the WTP does have the capability to reduce total microcystin to some extent should a bloom occur. The primary challenge for microcystin removal is the lack of online monitoring or established criteria for chemical dosing and operating parameters when treating for this toxin. MCA should visually monitor for algal blooms on a weekly basis. Should MCA desire a proactive approach to cyanobacteria monitoring, rapid cyanotoxin strip tests or algal monitoring sondes could be implemented into the existing monitoring plan.

MCA should implement a monitoring and protection program against the risk of cyanobacteria. If algal blooms are suspected, response triggers for cyanotoxin testing (microcystin-LR) should be conducted.

2.4 Filter Backwash Water

Filter backwash water from the treatment process is fed directly into the wastewater collection system. This system flows to the Cornwallis WWTP located on Billy Bishop Road. After treatment, the wastewater is released into the Bay of Fundy. Consequently, the filter backwash water has no impact on the source water quality. Filters continue to divert effluent to filter to waste until turbidity levels return to 0.2 NTU. This setpoint should be documented in the filtration SOP.

2.5 Source Quantity

Water withdrawal permits are issued by NSECC in order to document the allowable withdrawals from the source water. The Water Withdrawal Approval Number is 2014-090991 with an expiry date of October 1, 2025. The Approval is attached in Appendix H.

The Approval authorizes the following withdrawal rates:

- Average rate of withdrawal: 700,000 litres per day (L/day) (averaged over 30 days).
- Maximum rate of withdrawal: 1,125,000 L/day (averaged over 3 days).

Raw water flow data for 2022 is provided in Table A.6 (Appendix A) and summarized in Figure 2.1. A copy of the *Approval for Storage of Water/Water Withdrawal for the Purpose of Municipal Water Systems* is provided in Appendix H. The average daily rate of withdrawal of the Cornwallis WTP in 2022 was 538.9 m³/d, with a maximum rate of withdrawal of 1,190 m³/d occurring in August. The water withdrawal limit is based on the maximum 3-day average withdrawal. Daily flows from August 2022 were analyzed to confirm water withdrawal limits were not exceeded over a 3-day average period. Therefore, MCA is in compliance with the current Approval to Operate.

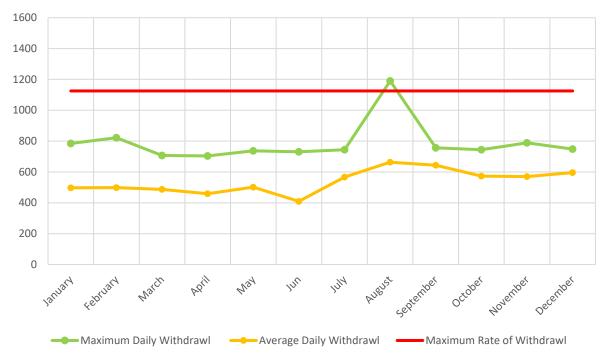


Figure 2.1: 2022 Withdrawal Data by Month

2.5.1 Demand Growth

The approximate population of Cornwallis Park is 750. Given the current production rate of the system, demand growth is expected to be met by the current drinking water system for the foreseeable future.

2.6 Source Water Protection Plan

The current SWPA was designated in 1965. Unfortunately, this designation does not follow the topographic divides very well and most significantly omits the area surrounding Shell Camp Lake. The SWPP recommends that a new Provincial Water Area designation be created. This would allow MCA to oversee regulated activities that may impair water quality within the Lake Cady Source Water Supply Area.

The objective of the Cady Lake SWPP is to promote stewardship within the watershed and protect the drinking water supplied to the Cornwallis WTP. The original SWPP was adopted in 2015. The main risks that have been identified and established within the watershed were ranked and listed below:

- 1 Fuel spills.
- 2 Sedimentation.
- 3 Herbicides and pesticides.
- 4 Residential fuel storage.
- 5 Road salt.
- 6 Septic systems.

- 7 Forest fires.
- 8 NSPI infrastructure.
- 9 Wildlife and vegetation.

The six primary management strategies adopted in the SWPP are described below:

- 1 **Acquisition of Land** Typically the most expensive option, but also the most effective, as it provides direct control over the land usage and development.
- 2 **Best Management Practices (BMPs)** Methodologies used by residents and industry to define practical and effective means of protecting source water areas.
- 3 **By-Laws** By-laws are enacted under Municipal Planning Strategies and allow the Municipality to restrict land usage and activities in sensitive areas.
- 4 **Contingency Planning** Not all risks to a Protected Water Area can be mitigated. Contingency Planning defines emergency response protocols, in case of a dangerous contamination occurrence within the Source Water Protection Area.
- 5 **Designation** Regulations enacted under the Nova Scotia Environment Act, Section 106. The Source Water Protection Area can be formally designated as Protected Water Area under this legislation. Regulations can be drafted that would enable the Water Utility to define allowable activities within the protected area.
- 6 **Education and Stewardship** educating people and communities on the importance of source water protection creates a sense of ownership and shared responsibility of the water resource and the need for its protection.

MCA indicated that an active Source Water Protection Advisory Committee (SWPAC) has not been held for an extended period of time. As such, the meeting minutes from the previous two SWPAC meetings are not attached as an Appendix. The date of the next SWPAC meeting has not been scheduled.

MCA should recommence annual meetings of the SWPAC and determine the status of updating the SWPA under NSECC.

2.7 Conclusion & Recommendations

2.7.1 Treatment Requirements to Protect Against Pathogenic Organisms

The Cornwallis WTP draws water from Cady Lake. As per the *Nova Scotia Treatment Standards for Municipal Drinking Systems*, surface water sources require a 3.0-log reduction for protozoa and 4.0-log reduction for viruses. Using DAF, filtration, and chlorination, the Cornwallis WTP meets the treatment requirements to protect against *Giardia*, *Cryptosporidium*, and viruses.

2.7.2 Disinfection By-Products

The Cornwallis WTP monitors THMs and HAAs at three different locations throughout the distribution system. Site C represents the entry point to the distribution system, Site A represents the distal end of the system, and Site B represents the central part of the distribution system. THM and HAA5 levels observed in the distribution system comply with the LRAA maximum of 100 μ g/L and 80 μ g/L respectively.

Site A does not adequately represent the distal end of the distribution system. MCA should switch this sampling location to ZURI Canada located on Burns Hill Road, where distribution turbidity, chlorine residual and bacteria are currently sampled. This is the farthest area served by the WTP and would, therefore, have the longest retention time.

2.7.3 Lead & Corrosion Control

The Cornwallis WTP does not adequately monitor lead concentrations in the distribution system. In 2022, four residential locations were sampled, and the *Approval to Operate* requires a minimum of 10. Residents were notified about potential testing by word of mouth, and as a note on their water bills. The information on the water bill notice did not meet the minimum requirements set by section 3 in the NSECC *Requirements for Lead and Copper Management*. All four samples were under the MAC of 0.005 mg/L for lead. In 2023, MCA will sample 10 residential locations for lead and copper as per their Lead and Copper Sampling Program.

Moving forward, MCA should ensure information communicated to residents for participation in the program meets the minimum requirements set in section 3 of the *Requirements for Lead and Copper Management*. Clarification from NSECC on lead and copper sampling requirements should be requested and an updated Approval to Operate with current sampling requirements should be provided.

The Annual Report did not include results for corrosion monitoring parameters at any sampling locations in the distribution system, which is not in compliance with the *Approval* to Operate. **MCA should begin sampling in accordance with its Annual Sampling Plan and Approval to Operate for corrosion control parameters.**

Currently no comprehensive document outlining the Corrosion Control Plan has been developed. This should include a detailed sampling plan, action limits for corrosion monitoring parameters, and description of follow-up actions. If water is deemed non-corrosive from sampling results, a request to NSECC for a reduction in sampling frequency can be made.

2.7.4 Guidelines for Canadian Drinking Water Quality

The last round of provided sampling results, are provided in Appendix E. The last round of sampling, completed in July 2021, was partially in compliance with the NSECC sampling requirements of the *GCDWQ*. The raw water sample for manganese exceeded the MAC of 0.12 mg/L. The Cornwallis WTP has commenced remedial measures to ensure exceedances are identified and investigated. The next round of sampling will be completed in 2027 to meet the minimum requirement of one sampling event every five years.

2.7.5 Guidelines for Monitoring Public Drinking Water Supplies

As per the *Approval to Operate*, the *GMPDWS* samples are collected annually and sent for analysis. The last round of sampling, completed in July 2022, was partially in compliance with the NSECC sampling requirements of the *GMPDWS*. The raw water sample for manganese exceeded the *GCDWQ* MAC of 0.12 mg/L. The Cornwallis WTP has commenced remedial measures to ensure exceedances are identified and investigated. The next round of compliance testing is scheduled to occur in July 2023.

MCA should begin sampling for manganese on a quarterly basis to be in compliance with the current *Approval to Operate*.

2.7.6 Source Water Protection Plan Monitoring

The sampling protocols for the active watersheds provide sufficient data and information needed to constantly evaluate the effectiveness of the SWPP. The sampling network provides MCA with a strong early warning system for potential contamination or changes in source water quality.

Currently MCA has not implemented these parameters into regular sampling procedures. As per the Annual Sampling Plan and Annual report, no sampling occurs at the outlets of Potter Lake, Shell Camp Lake and Mud Lake. These watersheds all contribute to the dammed head pond on West Moose River and would have significant impact on source water quality. MCA should begin sampling all parameters listed at all locations to be in compliance with current *Approval to Operate*. The SWPP monitoring program locations should also be reviewed and updated to select sites that may better reflect the active watersheds that are contributing to the source water.

2.7.7 Filter Backwash Water Discharge

Filter backwash water from the treatment process is fed directly into the wastewater collection system. This system flows to the Cornwallis WWTP located on Billy Bishop Road. After treatment, the wastewater is released into the Bay of Fundy. Consequently, the filter backwash water has no impact on the source water quality. Filters continue to divert

effluent to filter to waste until turbidity levels return to 0.2 NTU. This setpoint should be documented in the filtration SOP.

2.7.8 Source Quantity

In 2022, the WTP did not exceeded the maximum rate of withdrawal averaged over a 3-day average period, therefore, the Cornwallis WTP is in compliance with it's withdrawal limits in 2022.

2.7.9 Source Water Protection Plan

Appendix B identifies the boundaries of the Cady Lake Source Water Protection Area. The SWPP proposed updating the current SWPA to better represent all source water areas that contribute to the Cornwallis WTP influent. The last two SWPAC meetings were not included as they have not been held for an extended length of time.

MCA should recommence annual meetings of the SWPAC and determine the status of updating the SWPA under NSECC.

3 Treatment Processes, Facilities, & Equipment

3.1 Treatment Process

The *Approval to Operate* classifies the system as a Class III Water Treatment Facility and a Class II Water Distribution Facility. The *Approval to Operate* is attached in Appendix G, and the details are as follows:

- Approval Holder: Municipality of the County of Annapolis.
- Approval No: 2009-065804-02.
- Expiry Date: June 1, 2029.

3.1.1 Treatment Process Schematic

The WTP is a conventional DAF system followed by filtration , and consists of the following process units.

- Aluminum Sulfate (Alum) Feed.
- Sodium Carbonate (Soda Ash) Feed.
- Coagulation.
- Flocculation.
- Clarification DAF.
- Multimedia Filtration.
- Sodium hypochlorite feed (primary disinfection).
- Filtered Water Sodium Carbonate (Soda Ash) Feed.
- Corrosion Inhibitor Feed.

A schematic of the treatment process is presented below in Figure 3.1 and in Appendix I.

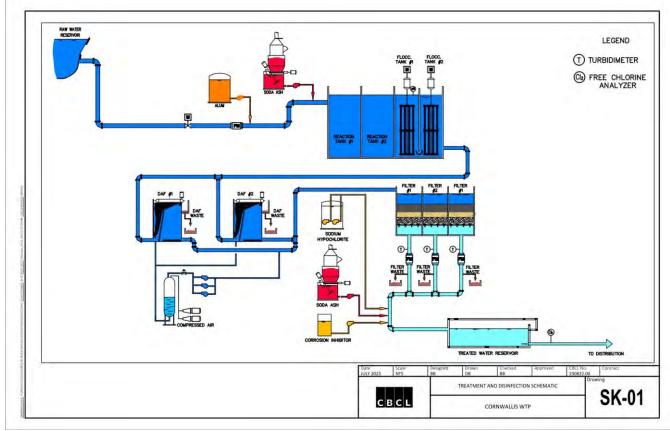


Figure 3.1: Treatment Process Schematic

3.1.2 Turbidity Levels & Associated Criteria

3.1.2.1 Surface Water

Table 3 of the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems* outlines the prescribed filter turbidity levels. The individual filter turbidity limits for conventional filtration systems, such as Cornwallis WTP, are as follows:

- Shall be less than or equal to 0.2 NTU in at least 95% of the measurements made or at least 95% of the time each calendar month.
- Shall not exceed 1.0 NTU at any time.
- Filter-to-waste filters shall be capable of directing filtered water to waste or recycle immediately following a backwash for a period of time until the filtrate turbidity is below 0.2 NTU.

Verification of Filter #1, Filter #2, and Filter #3 to continuously achieve the minimum 3.0-log removal credits for protozoa and 2.0-log removal credits for viruses was evaluated using Option 1 as outlined in the NSECC *Terms of Reference for Municipal Drinking Water Systems*. The Cornwallis WTP utilizes SCADA to provide individual filter effluent turbidity data.

Table 3.1, Table 3.2, and Table 3.3, illustrate the 2022 turbidity level breakdown for Filters 1, 2, and 3 respectively.

2022	Filter #1		
Month	Total Readings	Readings Below 0.2 NTU	Percentile
January	6,308	5,018	79.55%
February	5,454	4,716	86.47%
March	6,051	5,107	84.40%
April	5,422	3,910	72.11%
Мау	6,212	4,639	74.68%
June	5,095	4,739	93.01%
July	6,867	6,867	100.00%
August	8,025	8,025	100.00%
September	7,217	7,217	100.00%
October	7,132	7,132	100.00%
November	6,511	6,054	92.98%
December	7,201	6,632	92.10%

Table 3.1: Percentile of Turbidity Readings below 0.2 NTU in 2022 (Filter #1)

Table 3.2: Percentile of Turbidity Readings below 0.2 NTU in 2022 (Filter #2)

2021	Filter #2		
Month	Total Readings	Readings Below 0.2 NTU	Percentile
January	6,270	4,150	66.19%
February	5,491	5,447	99.20%
March	6,073	6,070	99.95%
April	5,397	5,382	99.72%
Мау	6,137	5,951	96.97%
June	5,155	4,429	85.92%
July	6,834	6,086	89.05%
August	8,030	7,488	93.25%
September	7,176	7,176	100.00%
October	7,058	7,058	100.00%
November	6,630	5,175	78.05%
December	7,222	6,603	91.43%

Table 3.3: Percentile of Turbidity Readings below 0.2 NTU in 2022 (Filter #3)

2022	Filter #3		
Month	Total Readings	Readings Below 0.2 NTU	Percentile
January	6,273	5,888	93.86%
February	5,473	5,434	99.29%
March	6,050	6,047	99.95%
April	5,392	5,377	99.72%
May	6,235	6,016	96.49%

June	5,125	4,363	85.13%
July	6,826	6,084	89.13%
August	7,982	7,440	93.21%
September	7,199	7,176	99.68%
October	7,104	7,104	100.00%
November	6,605	5,078	76.88%
December	7,158	5,506	76.92%

The data presented in the above tables shows that all three filter units were not able to produce filtered water to comply with turbidity limits at all times in 2022. As such, the Cornwallis WTP does not meet the requirements to receive the removal credits as per *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*. **Control strategies such as more frequent backwashing and updating PLC programing should be implemented to mitigate exceedances. If exceedances remain an issue after operational changes have been made, a comprehensive filter evaluation could also be completed. This would be done to examine and evaluate the condition of the filters and if appropriate, provide filter optimization options and recommendations.**

The 2022 Annual Report only reported exceedances in October, which does not match the interval data provided. Daily grab sample readings were not provided and therefore could not be compared to interval or annual report data. **Exceedances may not have been identified at the plant due to the high setpoint within the SCADA programming being set to 1.2 NTU, instead of 0.2 NTU. Due to this, the Cornwallis WTP is not operating in compliance with the current Approval to Operate. This programming has since been adjusted and the high alarm setpoint at the plant has been set to 0.2 NTU, and an automatic shutdown is initiated when filter turbidity levels exceed 1.0 NTU.**

All documented exceedances in the Annual Report were reported to NSE. The 2022 annual sampling plan outlines potential causes and action measures that should be followed when continuous turbidity monitoring of filtered water indicates turbidity levels exceeding 1.0 NTU at any time, or 0.2 NTU more than 5% of the time each calendar month. These potential causes and action measures are summarized in Table 3.4 below.

Potential Cause of Elevated Turbidity	Identify Issue	Remedial Measures	Preventative Measures
Elevated Iron and Manganese	Red or black sediments in water, elevated sample concentrations.	Increased water quality monitoring.	Iron and manganese treatment.
Increased Plant Flow Rate	Review water use.	Reduce plant flow rate.	Operate within the approved design flow.

Table 3.4: Cornwallis Park WTP Potential Sources of Elevated Turbidity and Action Measures

Improper Cleaning of Filters	High turbidity after filtration.	Backwash filters.	Establish protocol for filter cleaning and maintenance.
Online Turbidity Meter Error	Quality control with handheld turbidity meter.	Calibrate the turbidity meter.	Establish QA/QC protocol.

3.1.2.2 GUDI Wells

This section is not applicable for this system.

3.1.2.3 Non-GUDI Wells

This section is not applicable for this system.

3.1.2.4 Review of the Standard Operating Procedure for Filtration Process MCA currently does not have a Stand Operating Procedure (SOP) for standard filtration processes.

MCA should create a comprehensive SOP for filtration process that includes daily operations procedures for filtration as well as clear procedures for notification, action items, plant shutdown, backwashing procedures, and bringing the WTP online after a process upset in the WTP filter effluent.

3.1.2.5 Inspection of Turbidity Meters

Online monitoring of filter effluent turbidity is conducted using a HACH 1720E series turbidimeter. These meters meet and exceed the *USEPA Method 180.1* rules for measuring turbidity for drinking water compliance. The analysis method is based upon the comparison of light scattering by the sample under defined conditions with the intensity of light scattered by a standard reference suspension. These units are capable of measuring turbidity levels with an accuracy of $\pm 2\%$ of the reading or ± 0.02 NTU (whichever is greater) from 0 to 40 NTU. These readings are double checked using a bench model HACH 2100 turbidimeter.

MCAs Operations and Maintenance Manual does not include a detailed quality assurance and calibration program. Turbidimeters are inspected on a weekly basis by operators and calibrated as needed.

MCA should update the Quality Assurance/Quality Control (QA/QC) Standard Operating Procedure (SOP) to better reflect the operation, maintenance, and calibration of the online monitoring equipment. The updated SOP should include sections on equipment start-up, calibration, maintenance, and troubleshooting.

3.1.2.6 Filter Redundancy & Compliance

The rated design capacity of the Cornwallis WTP packaged treatment system is 2,100 m³/day (2.1 MLD) with one filter out of service. The plant runs at an average of 546 m³/day, which can be adequately met by running only one filter. Filter capacity has been deemed to not be an issue as the Cornwallis WTP operates at a fraction of the design capacity.

3.1.3 Membrane Filtration

This section is not applicable for this system.

3.1.4 Primary Disinfection

Under the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*, treatment processes using surface water as their source water are required to have the ability to achieve:

- 3.0-log reduction for *Giardia* and *Cryptosporidium*.
- 4.0-log reduction for viruses.
- A minimum of 0.5-log inactivation for *Giardia* with primary disinfection (chlorine) when used in conjunction with filtration.

The filtration drinking water technology facility located in Cornwallis can receive a 3.0-log removal credit for protozoa (*Cryptosporidium* oocysts and *Giardia* cysts), and a 2.0-log credit for viruses, based on obtaining the individual filter turbidity limits described in the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*. Sodium hypochlorite is used to achieve primary chemical disinfection at the Cornwallis WTP. A schematic of the primary disinfection system is provided in Appendix K.

In 2022 the system was not able to meet individual filter turbidity limits and necessary log reductions were not met.

3.1.4.1 CT Calculations (CT Concept)

Calculations are based on various operational, treatment, and system design parameters. Operational parameters including maximum flowrate, chlorine residual and contact volume will affect the time that primary disinfection occurs and the efficiency of disinfection. Furthermore, environmental conditions such as pH and temperature affect the efficiency of disinfection and are included in CT calculations. Calculations reflect the worst-case scenario to ensure that adequate disinfection will always occur in a given water disinfection system.

Primary disinfection occurs in the treated water storage tank at the WTP and in the transmission line from the treated water storage to the first customer. The treated water storage is designed to hold a maximum volume of 2,045 m³ with a single unbaffled inlet

and outlet, so a baffling factor of 0.3 is assigned. The transmission main acts as a plug flow and has an assigned baffling factor of 1.0. While additional CT is achieved in the transmission main as calculated below, it should not be used in calculation of CT compliance for the purposes of conservatism. All design parameters used to calculate the CT ratio for the WTP are listed below in Table 3.4 and Table 3.5.

CT Design Parameters	Values
Maximum Flow (m ³ /day)	1227
Maximum pH	8.0
Minimum Temperature (°C)	0.5 °C
Minimum Free Chlorine Residual (mg/L) 0.6 mg/L (Actual 2022 mg/L)	

Table 3.5: Treated Water Storage & Transmission Line Design Parameters for CT Calculations

Clearwell Design Parameters	Values
Treated Water Storage Volume (m ³)	2,045 m ³
Minimum Water level in the Tank	20%
Baffling Factor (Tank)	0.3
Transmission Line Length (300 mm diameter)	140 m
Transmission Line Volume (300 mm diameter)	9.9 m ³
Transmission Line Length (200 mm diameter)	50 m
Transmission Line Volume (200 mm diameter)	1.6 m ³
Baffling Factor (Transmission Line)	1.0

$$Contact Time_{Storage Tank} \ (min) = \frac{Volume \ (m^3) * volume \ \%}{Max \ Flow \ (\frac{m^3}{day})} = \frac{(2045 \ m^3) * 20\%}{1,227 \ \frac{m^3}{day}} = 480 \ min$$
$$Contact Time \ _{Transmission \ Line} \ (min) = \frac{Volume \ (m^3)}{Max \ Flow \ (\frac{m^3}{day})} = \frac{11.5 \ m^3}{1,227 \ \frac{m^3}{day}} = 13.5 \ min \ (not \ used)$$

 $CT_{actual} (mg * min/L) = Chlorine Residual \left(\frac{mg}{L}\right) * Contact Time (min) * Baffling Factor$

$$CT_{actual} (mg * min/L) = 0.6 \frac{mg}{L} * 480 * 0.3 = 86.4 mg * min/L$$

 $CT_{req} = 46 mg * min/L$ (for 0.5 log Giardia at Temp = 0.5°C, pH = 8.0, Free Chlorine = < 0.4 mg/L)

$$\frac{CT_{actual}}{CT_{reg}} = \frac{86.4 \ mg * min/L}{46 \ mg * min/L} = 1.9$$

The CT calculation above for the 0.5-log inactivation of *Giardia* confirms that the Cornwallis WTP is meeting the minimum CT required. This is the case as the ratio of $CT_{actual}/CT_{required}$ is greater than one and confirms proper disinfection. In 2022, there were no instances where operational conditions for adequate CT were not met.

3.1.4.2 UV Disinfection (IT Concept)

This section is not applicable for this system.

3.1.4.3 Redundancy, Monitoring, & Alerting

Online monitoring of chlorine residual is accomplished using a HACH CL17 chlorine analysers at the outlet of the treated water reservoir that continuously take primary disinfection residual readings and transmits this data to the SCADA system for monitoring and alarming, as required. Control limits within the SCADA system are set to alarm and notify operators when the primary disinfection system is operating incorrectly.

A portable chlorine residual analyzer (HACH DR2000 Spectrophotometer) is used to confirm chlorine residual. This unit can measure free chlorine residual from a range of 0.1–2.0 mg/L (±0.2 mg/L). The device is in good working order and is maintained by operations staff. The device is calibrated when required to ensure accuracy and functionality.

3.1.4.4 Standing Operating Procedures

There is no formal SOP for the disinfection process. A general SOP describes how the CT concept of disinfection may be applied.

MCA should update the current disinfection SOP to formally outline operational setpoints, worst case scenario CT values, response procedures, and operation/maintenance of the disinfection equipment.

3.1.5 Secondary Disinfection

Secondary disinfection is achieved by maintaining a minimum free chlorine residual of 0.2 mg/L at all points within the distribution system. Grab samples are collected weekly at two designated sample locations. It should be noted that sampling locations for January and February occurred at the mall and at Annapolis Basin Maintenance. Samples for the remainder of the year were taken from ZURI Canada and Annapolis Basin Maintenance. All samples collected in 2022 met the required chlorine residual, though sampling locations were not in compliance with the *Approval to Operate* as a full year of weekly results is needed for each sampling location.

The requirement to maintain an adequate secondary disinfectant residual throughout the distribution system drives the dose applied at the primary chlorination point.

3.1.6 Other Critical Processes

Other critical processes include chemical injection systems for coagulation, pH adjustment, and corrosion control.

3.1.6.1 Coagulation

Aluminum sulfate (alum) is used as a coagulating chemical at the WTP. The coagulant causes the particles to become destabilized and begin to clump together in the raw water to form floc. Dissolved organics are precipitated and/or adsorbed to the floc. The floc floats to the surface of the DAF tank for skimming and is filtered out, resulting in the reduction of turbidity and dissolved organic material in the process water. Liquid alum from the alum storage tank is injected into the process stream before reaction tank 1.

3.1.6.2 pH Adjustment

Sodium carbonate (soda ash) solution is mixed in a chemical solution tank from dry powdered soda ash. This is injected into the process stream before reaction tank 1, to adjust the pH of the pretreated water to be within the optimal range for alum coagulation.

3.1.6.3 Orthophosphate Feed

Injection of orthophosphates into the treatment process provides corrosion control. The plant utilizes a zinc-orthophosphate product to protect the distribution system from corrosion. Orthophosphate is injected into the water stream prior to entering the treated water reservoir.

3.1.7 Waste Streams

3.1.7.1 Filter-to-Waste

Upon completion of a successful backwash sequence, filter backwash water from the treatment process is fed into a holding tank, which feeds directly into the wastewater collection system. The filter backwash does not come in contact with the source water. The required range should be documented in the filter SOP.

Filter backwash water is subsequently pumped into a municipal sewer and is treated at the Cornwallis WWTP. As a result, water quality measurements (Total Suspended Solids (TSS), [Al], [Cl], pH, and fish toxicity) are not measured and the backwash water has no effect on the surrounding surface water quality.

3.1.7.2 Filter Backwash Water - Discharging into a Freshwater Watercourse This section is not applicable for this system.

3.1.7.3 Filter Backwash Water - Discharge to Land or Soil

This section is not applicable for this system.

3.1.7.4 Filter Backwash Water – Discharge to a Marine or Brackish Environment

This section is not applicable for this system.

3.1.7.5 Other Waste Streams

MCA did not report where DAF float waste streams were directed or treated.

3.2 Distribution Water Quality

Distribution system water quality samples are collected from the locations listed below. The Distribution Map is presented in Appendix C.

Site A	Cornwallis Wastewater Treatment Plant, Billy Bishop Road
Site B	Annapolis Maintenance, Corvette Drive
Site C	Zuri Canada, 1051 Waldeck Line Road (a.k.a. Burns Hill Rd)
Site D	Water Treatment Plant

It should be noted that samples in January and February were collected at the local mall. The county sold the mall and public works are no longer allowed to sample there. Sampling locations were switched from the mall to Zuri Canada in March 2022.

3.2.1 Chlorine Residual Levels

Samples from the distribution system for chlorine residual were collected weekly at two sample locations using grab samples as per the *Approval to Operate* conditions. Samples were collected at Sites B and C from March to December. In January and February samples were taken from the local mall, therefore sampling results for Site C are incomplete. Results indicate the chlorine residuals did not fall below 0.2 mg/L or exceed 4.0 mg/L.

3.2.2 Microbial Water Quality

Schedule A in the existing Cornwallis WTP *Approval to Operate* requires samples to be collected on a weekly basis to monitor for total coliforms and *E. coli*. Samples were collected at Sites B and C from March to December. In January and February samples were taken from the local mall, therefore sampling results for Site C are incomplete. All test results were absent for the presence of *E. coli* and total coliforms in 2022.

The number of samples taken in 2022 exceeds the minimum number of samples required for a population of 750 residents. The sampling locations represent the center and the distal end of the distribution system. As a result, the distribution system microbial water quality for the WTP is within compliance.

3.2.3 Turbidity

The distribution system was monitored for turbidity on a weekly basis at two sampling locations (Sites B and C) from March to December. Samples in January and February were only taken at the mall; therefore, sampling results are incomplete.

Schedule A in the *Approval to Operate* requires turbidity samples to be collected on a weekly basis to monitor for distribution turbidity to ensure values are maintained below 5.0 NTU. The sampling records for 2022 distribution turbidity levels for all locations were below the limit but are incomplete as a full year of sampling results was not provided.

3.2.4 Cross Connection Control Program

MCA has developed a Cross Connection Control Program to comply with NSECC requirements. The Cross Connection Control Program requires all multi residential units (greater than four units), industrial, commercial, and institutional buildings to install a Backflow Prevention Device (BFD) on their water service lateral. The devices are installed to provide premises isolation at the entrance to the building for new sprinkler services, and on the customer's side of the water meter for domestic services.

Currently the plan does not meet the minimum requirements outlined in *A Guide to Assist Nova Scotia Municipal Water Works Develop a Cross Connection Control Program.* **MCA should update the cross-connection control program to include a detailed project scope, budget, authority, and timelines.**

3.2.5 Other Distribution System Monitoring Programs

MCA conducts the following distribution system monitoring:

- Annual flushing program with inspection of hydrants and system gate valves.
- Ongoing leak detection program in development, includes both flow monitoring and correlation and acoustic leak detection equipment.

There is currently no formal reservoir inspection program in place at the Cornwallis reservoir. It is recommended that a program be established to conduct interior inspection in the reservoir on a regular basis.

3.3 On-Site Inspection

An on-site inspection was conducted on June 7, 2023, by Ben Bickerton, M.A.Sc., P.Eng. and Meghan Lea, M.A.Sc., EIT.

3.4 Conclusion & Recommendations

3.4.1 Filtration

All three filter units were not able to produce filtered water with turbidity less than or equal to 0.2 NTU in at least 95% of the measurements made. As such, the Cornwallis WTP does not meet all the requirements to receive the removal credits as per *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*. **Control strategies such as more frequent backwashing and updating PLC programing should be implemented to mitigate exceedances. If exceedances remain an issue after operational changes have been made, a comprehensive filter evaluation could also be completed. This would be done to examine and evaluate the condition of the filters and if appropriate, provide filter optimization options and recommendations**

The plant can meet the maximum design flow of the WTP while only operating one filter, providing the necessary redundancy.

3.4.2 Membranes

This section is not applicable for this system.

3.4.3 Primary Disinfection

The WTP uses sodium hypochlorite as primary disinfection. Calculations for CT confirm that primary disinfection adequately attains a 2.0-log reduction of viruses and 0.5-log reduction of *Giardia* prior to entering the distribution system.

MCA should update the current disinfection SOP to formally outline operational setpoints, worst case scenario CT values, response procedures, and operation/maintenance of the disinfection equipment.

3.4.4 Secondary Disinfection

Secondary disinfection is achieved by maintaining a minimum free chlorine residual of 0.2 mg/L at all points within the distribution system. Grab samples are collected weekly at designated sample locations and online chlorine analyzers continuously monitor free chlorine residual levels leaving the WTP and water storage tank reservoir.

3.4.5 Other Critical Processes

Other critical processes include chemical injection systems for coagulation, pH adjustment, and corrosion control.

3.4.6 Waste Streams

3.4.6.1 Filter-to-Waste

The existing filter-to-waste sequence meets the requirements of the *Nova Scotia Treatment Standards for Municipal Drinking Water*. Filters direct water to waste holding tank when measured turbidity at the filter outlet exceeds 0.2 NTU. This required range should be documented in the filter SOP.

3.4.6.2 Filter Backwash Water

Filter backwash water is discharged into a municipal sewer and treated at the WWTP. Consequently, it has no effect on the water quality of surrounding surface water.

3.4.7 Distribution Water Quality

3.4.7.1 Chlorine Residual Levels

Samples from the distribution system for chlorine residual were collected weekly at two sample locations using grab samples as per the *Approval to Operate* conditions. Samples were collected at a different site in January and February. Sampling results for one site are incomplete. Results indicate the chlorine residuals did not fall below 0.2 mg/L or exceed 4.0 mg/L.

3.4.7.2 Microbial Water Quality

Samples from the distribution system for chlorine residual were collected weekly at two sample locations using grab samples as per the *Approval to Operate* conditions. Samples were collected at a different site in January and February. Sampling results for one site are incomplete. All test results were absent for the presence of *E. coli* and total coliforms in 2022.

3.4.7.3 Turbidity

The distribution system was monitored for turbidity on a weekly basis at two sampling locations from March to December and one alternate location in January and February; therefore, sampling results are incomplete.

Schedule A in the *Approval to Operate* requires the Cornwallis WTP to collect turbidity samples on a weekly basis to monitor for distribution turbidity to ensure values are maintained below 5.0 NTU. The sampling records for 2022 distribution turbidity levels for all locations were below the limit but are incomplete as a full year of sampling results was not provided.

3.4.7.4 Cross Connection Control Program

MCA has developed a Cross Connection Control Program to partially comply with NSECC requirements. The Cross Connection Control Program requires all multi residential units (greater than four units), industrial, commercial, and institutional buildings to install a Backflow Prevention Device (BFD) on their water service lateral. The devices are installed to

provide premises isolation at the entrance to the building for new sprinkler services, and on the customer's side of the water meter for domestic services.

Currently the plan does not meet the minimum requirements outlined in *A Guide to Assist Nova Scotia Municipal Water Works Develop a Cross Connection Control Program.* **MCA should update the cross-connection control program to include a detailed project scope, budget, authority, and timelines.**

3.4.7.5 Other Distribution System Monitoring Programs

MCA conducts the following distribution system monitoring:

- Annual flushing program with inspection of hydrants and system gate valves.
- Ongoing leak detection program in development, includes both flow monitoring and correlation and acoustic leak detection equipment.

There is currently no formal reservoir inspection program in place at the Cornwallis reservoir. It is recommended that a program be established to conduct interior inspection in the reservoir on a regular basis.

3.4.8 On-Site Inspection

An on-site inspection was conducted on June 7, 2023. The WTP appeared to be in good working order. Discussions were held regarding manganese exceedances and corrective measures to implement.

4 Operations, Monitoring, & Management

4.1 Operations & Maintenance

As required by the *Approval to Operate*, MCA has a limited Operations and Maintenance Manual which outlines the characteristics of the system and includes emergency actions and limited SOPs for normal operations. Copies of the Operations and Maintenance Manual are available digitally, and operations staff have access to these documents and are aware of their contents.

All certified operators make process adjustments such as chemical dosing changes, perform equipment and instrument maintenance as required based on experience, and continuous evaluation of the system performance. The Operator in Direct Responsible Charge (ODRC) is ultimately responsible for changes, and significant changes beyond routine adjustments are discussed with the ODRC prior to implementing the change. The Operations and Maintenance Manual lacks detailed SOPs for the operations staff to follow. The maintenance plan was reviewed and is not adequate to ensure the long-term viability of the Municipal Public Drinking Water Supply, including distribution system components.

MCA should update the Operation and Maintenance Manual to include detailed SOPs in accordance with the NSECC document *A Guide to Assist Nova Scotia Municipal Water Works Develop a Comprehensive Operations Manual.*

4.2 Monitoring & Reporting

The approved monitoring program was submitted to NSECC in 2022. The program includes quality assurance programs and training, water quality compliance limits, sampling sites, and monitoring plans. Compliance monitoring is required to ensure that the water adheres to the quality standards outlined in the *GCWDQ/GMPDWS*. A summary of the raw, treated, and SWPP sampling programs are provided in Table 4.1, Table 4.2, and Table 4.3 respectively.

Table 4.1: Raw Water Sampling Program

Summary of Raw Water Requirements					
Parameter	<i>Approval t</i> Sampling Re	Cornwallis Water System Sampling Program			
	Location	Frequency	Frequency		
Turbidity	Raw Water	Continuous	Continuous		
Water Volume	Flow Meter	Continuous	Continuous		
All GMPDWS	Raw Water	Raw Water Annually			
All GCDWQ	Raw Water	Raw Water Every 5 years			
Viruses	Raw Water As Requested		As Requested		
Manganese	Raw Water	Quarterly	Quarterly		
<i>Giardia</i> and <i>Cryptosporidum</i>	Raw Water	As Requested	As Requested		
Cyanobacteria	Raw Water	Visual monitoring weekly – May to October	Not required*		
Cyanobacterial Toxins – Total Microcystins	Raw Water	During a bloom and along with 5-year <i>GCDWQ</i> testing	Not required*		

* No documentation provided for these parameters to be excluded. Operations staff had no knowledge on NSECC approval for sampling reductions/omissions.

Table 4.2: Distribution Water Sampling Program

Summary of Treated Water and Distribution Monitoring Requirements						
Parameter	Approval to Operate Sampling Require	ments	Cornwallis Water System Sampling Program			
	Location	Frequency	Frequency			
Turbidity	Individual Filter Effluent	Continuous	Continuous			
Turblaty	Distribution Sample Points	Weekly Grab	Weekly Grab			
Temperature	CT Control Point	Continuous	Continuous			
рН	CT Control Point	Continuous	Continuous			
	CT Control Point	Continuous	Continuous			
Free Chlorine	Storage Structure Outlet	Continuous	Continuous			
	Distribution Sample Points	Weekly Grab	Weekly Grab			
Total Coliform & <i>E. coli</i> (P/A)	Distribution Sample Points	Weekly Grab	Weekly Grab			
Parameters per Corrosion Monitoring Program	Distribution Sample Points	Quarterly	Annual as per NSECC approval*			
	Water entering distribution	Monthly	No longer required			
Aluminium	Distribution Sample Points	Monthly	No longer required			
Manganese	Entering Distribution	Quarterly	Quarterly			
Lead – Flushed Samples	Representative Locations in Distribution System	Annually (Warmest Month)	Annually (Warmest Month)			
Lead (Health Canada)	See Lead Sampling Plan	Annually (May to October)	Annually (May to October)			
THM's	Distribution Sample Points	Quarterly	Quarterly			
HAA's	Distribution Sample Points	Quarterly	Quarterly			
All GMPDWS	Entering Distribution	Annually	Annually			
All health-related parameters of <i>GCDWQ</i>	Entering Distribution	Every 5 years	Every 5 years			
Viruses	Water entering distribution	As requested	As requested			
<i>Giardia</i> and <i>Cryptosporidium</i>	Water entering distribution	As requested	As requested			
Cyanobacterial Toxins	Storage Tank Outlet	During a bloom and along with 5- year <i>GCDWQ</i> testing	During a bloom and along with 5- year <i>GCDWQ</i> testing			

* No documentation provided for these parameters to be excluded. Operations staff had no knowledge on NSECC approval for sampling reductions/omissions.

Table 4.3: Source Water Protection Plan Sampling Program

Locations				
Parameter	Outlet of Cady Lake (low-density residential area)	Outlets of Potter Lake, Shell Camp Lake, & Mud Lake	Raw water before treatment	
Turbidity	Quarterly	Semi-annual	Daily	
Conductivity	Quarterly	Quarterly	Annual	
рН	Quarterly	Quarterly	Daily	
Total Coliform and E. coli	Semi-annual	Semi-annual	Weekly	
Nitrate	Semi-annual	Semi-annual	Annual	
Chloride	Semi-annual	Semi-annual	Semi-annual	
Total Dissolved Solids (TDS)	Annual	Annual	Annual	
Pesticides	Annual	Annual	Annual	
Polychlorinated Biphenyls (PCBs)	Annual	Annual	Annual	
Volatile Organic Compounds (VOCs)	Annual	N/A	Annual	
Total Petroleum Hydrocarbons	Annual	N/A	Annual	

Cornwallis WTP System Assessment Report 34

All samples collected for the various monitoring programs are sent to AGAT Laboratories in Dartmouth, NS for analysis. AGAT is an accredited laboratory as per the *Policy on Acceptable Certification of Laboratories*.

4.2.1 Review of Recent Submitted Annual Report

The 2022 Annual Report was reviewed. Not all sections were completed; most notably, distribution system corrosion control parameters, manganese and lead/copper sampling results were not included.

MCA should ensure that each section of the Annual Report where applicable to the Cornwallis system is completed in its entirety each year. The document can be modified from the basic template provided by NSECC.

4.3 Management

The Cornwallis system has been classified as a Class III Water Treatment Facility and a Class II Water Distribution Facility. James Jenner, Chief Operator is the Operator in Direct Responsible Charge (ODRC) of the WTP. A summary of plant staffing information is provided as:

- James Jenner (ODRC) Level III Water Treatment.
- John Webber Level III Water Treatment.
- Andrew Cranton Level II Water Treatment.
- Charles Grant Level I Water Treatment.
- Amy Brown Level I Water Treatment.
- Matt Leonard Level I Water Treatment.

The ODRC protocol information is provided in Appendix A.

4.4 Conclusion & Recommendations

4.4.1 Operation & Maintenance

The system has a limited Operations and Maintenance Manual. It is recommended that a comprehensive manual be created that elaborates on protocols and procedures.

MCA should update the Operations and Maintenance Manual to include detailed SOPs on daily operations.

4.4.2 Monitoring & Reporting

Results from all sampling listed in the approved Annual Sampling Plan was not available for review. The 2022 Annual Report did not include reporting on all parameters (e.g. corrosion control parameters).

MCA should ensure that each section of the Annual Report where applicable to the Cornwallis system is completed in its entirety each year. The document can be modified from the basic template provided by NSECC.

4.4.3 Management

The ODRC is James Jenner. All operators are adequately certified and there is a sufficient number of operators as well as back-up personnel available. The procedure for when the ODRC is absent is outlined in Appendix A.

5 Ability to Comply

This section will provide a summary of conclusions as outlined in the NSECC Terms of Reference.

5.1 Summary

5.1.1 Source Water Characterization

5.1.1.1 Treatment Process

Water is supplied from surface water from the Cady Lake Watershed and surrounding watersheds within the Municipal boundaries of the MCA. The treatment process consists of coagulation, flocculation, DAF, filtration, and chlorine disinfection. The *Approval to Operate* is valid until June 1, 2029.

5.1.1.2 Turbidity Levels & Associated Criteria

The turbidity of filtered water leaving the filtration units must be less than or equal to 0.2 NTU in at least 95% of the measurements made or at least 95% of the time each calendar month. All three filters at the Cornwallis WTP were not able to meet this criterion at all times in 2022. As such, all three filters were not compliant with the turbidity level criteria outlined in the *Approval to Operate*.

5.1.1.3 Primary Disinfection

All municipal drinking water systems in Nova Scotia are required to meet the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems* to achieve:

- 3.0-log removal for *Giardia* and *Cryptosporidium*.
- 4.0-log removal credits for viruses.

The filtration drinking water technology facility located in Cornwallis can receive a 3.0-log removal credit for protozoa (*Cryptosporidium* oocysts and *Giardia* cysts), and a 2.0-log credit for viruses, based on obtaining the individual filter turbidity limits described in the *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*. Due to the turbidity exceedances, the system was not able to achieve the necessary levels to qualify for these removal credits at all times. As such, the 0.5-log removal of *Giardia* and 2.0-log removal of viruses is not completed using chlorine disinfection.

CT calculations for the "worst case scenario" confirm that chlorine disinfection is adequate to always achieve both the 0.5-log reduction of *Giardia* and a 2.0-log reduction of viruses. As such, the combination of filtration and chlorine inactivation is able to remove and inactivate protozoa (*Giardia* and *Cryptosporidium*) and viruses to NSECC's *Nova Scotia Treatment Standards for Municipal Drinking Water Systems*.

Based on calculation of the primary disinfection system, CT is achieved using sodium hypochlorite with contact in the treated water storage reservoir.

5.1.1.4 Secondary Disinfection

Secondary disinfection is achieved by maintaining a minimum free chlorine residual of 0.2 mg/L at all points within the distribution system. Weekly grab samples within the distribution system are used to ensure that the minimum chlorine residual is met.

5.1.1.5 Other Critical Processes

There are no other critical processes at the WTP.

5.1.1.6 Process Waste Streams

Filters are backwashed until effluent achieves a critical turbidity value within a specified range. All process waste from filter backwash and the DAF clarifier are directed to an on-site wastewater tank which feeds directly to the Cornwallis WWTP.

5.1.2 Distribution System Water Quality

5.1.2.1 Chlorine Residuals

Chlorine residuals in the distribution system are acceptable and met a minimum concentration of 0.2 mg/L. Weekly samples were performed on the treated water at two locations, though only one location had results for an entire year. Online continuous monitoring was also conducted at the outlet of the water storage reservoirs in the distribution system.

5.1.2.2 Microbial Water Quality

Microbiological samples for *E. coli* and total coliforms were collected at two distribution locations weekly, though only one location had results for an entire year. All results for each location tested absent for *E. coli* and total coliforms in 2022.

5.1.2.3 Turbidity

Grab samples are collected weekly from two distribution sample points from March to December. Sampling occurred at a single alternate location in January and February. All samples collected were below 5.0 NTU though results were incomplete.

5.1.2.4 Cross Connection Control Program

MCA has implemented an approved Cross Connection Control Program to partially comply with NSECC requirements.

MCA should update the cross-connection control program to include a detailed project scope, budget, authority and timelines.

5.1.2.5 Other Distribution Monitoring System

No other distribution system monitoring programs are in place for the system.

5.1.3 Operations, Monitoring, & Management

5.1.3.1 Operations & Maintenance

The Cornwallis WTP has an Operations and Maintenance Manual. It is recommended that the manual be updated to better outline the characteristics of the system and include emergency actions and SOPs for normal facility operation.

5.1.3.2 Monitoring & Reporting

The 2022-2023 monitoring program and 2022 Annual Report appear to address all requirements, with minor exceptions including lead/copper, manganese, and corrosion control sampling results.

All chemical analyses are carried out at the AGAT Laboratories in Dartmouth. AGAT Laboratories is an accredited laboratory as per the *Policy on Acceptable Certification of Laboratories*.

5.1.3.3 Management

The Cornwallis WTP has been classified a Class III Water Treatment Facility and a Class II Water Distribution Facility. James Jenner, Chief Operator is the ODRC of the WTP.

5.1.4 Recommendations

Table 5.1 summarizes the recommendations to problems identified throughout this report.

Problem/ **Time Frame Recommended Action Opinion of Cost** Category **Challenge Area** to Complete SWPP Annual SWPP Meeting Commence annual SWPAC meeting. \$0 2023 Comprehensive filter evaluation to determine any filter deficiencies. **Filtration Exceedances** 1 year Treatment \$10.000 Develop a comprehensive Operations and Maintenance manual with SOPs in Operations and No cost if done in-Management Maintenance Manual accordance with the NSECC guidance 1 year house and SOPs limited manual. Complete monitoring proposed in the SWPP, including water quality sampling SWPP and Manganese Water Quality \$10,000/year 1 year Monitoring and watershed inspections. Formalize a comprehensive Corrosion Control Plan with action limits/responses that align with the **Corrosion Control** No cost if done incurrent Approval to Operate, aiming to Water Quality 6 months Monitoring house reduce lead and copper, to correspond to existing sampling plan. Establishing key water quality parameters for testing the occurrence Cyanobacteria No cost if done in-Monitoring 3 months monitoring of cyanobacteria house Copper and Lead sampling frequency and number of locations should be Copper and Lead No cost if done in-Monitoring clarified with NSECC, approval should 1 year Monitoring house be updated to reflect any changes.

Table 5.1: Recommendations

Category	Problem/ Challenge Area	Recommended Action	Time Frame to Complete	Opinion of Cost
Monitoring	DBP Sampling	DBPs should be sampled at ZURI Canada, since this site represents the longest retention time in the distribution system.	3 months	\$400/year
Monitoring	Copper and Lead Sampling	Information to residents about the lead and copper sampling should follow lead and copper management guidelines.	1 year	No cost if done in- house
Treatment	Disinfection SOP	Update disinfection SOP to include notification and response procedures in the event of CT parameters falling outside of design ranges.	Immediate	No cost if done in- house
Management	Limited Cross Connection Control Plan	Update Cross Connection Control Plan to comply with minimum requirements set by NSECC.	3 months	No cost if done in- house

5.2 Report Preparation

5.2.1 Engineer's Declaration

I, the undersigned, hereby declare that to the best of my knowledge, the information contained herein and the information in support of this submission, as completed by me, is complete and accurate in accordance with my obligations under the Engineering Profession Act and its regulations. I further declare that this submission has been prepared in accordance with the published standard for this submission.

Ben Bickerton, M.A.Sc., P.Eng. Process Engineer

APPENDIX A

Tables Required by the Terms of References

Table A.1: Groundwater Under the Direct Influence of Surface Water: MPA Test Results *Table not required for this system as it is a surface water system.*

Compling Do	riad/Manth	Site A	Site B	Site C
Sampling Period/Month		THM total (mg/L)	THM total (mg/L)	THM total (mg/L)
	January	-	-	-
Q1	February	0.043	0.032	0.022
	March	-	-	-
	April	-	-	-
Q2	May	0.082	0.061	0.037
	June	-	-	-
	July	0.154	0.153	0.110
Q3	August	-	-	-
	September	-	-	-
	October	0.043	0.043	0.052
Q4	November	-	-	-
	December	-	-	-
LRAA (mg/L)	LRAA (mg/L)		0.072	0.055
Meets MAC o	of 0.1 mg/L (100 μg/L)	Yes	Yes	Yes

Table A.2: Annual Trihalomethanes Concentrations by Sample Location

Table A.3: Annual Haloacetic Acid Concentrations by Sample Location

	vied /Menth	Site A	Site B	Site C
Sampling Period/Month		HAA (5) mg/L	HAA (5) mg/L	HAA (5) mg/L
	January	-	-	-
Q1	February	0.033	0.036	0.029
	March	-	-	-
	April	-	-	-
Q2	May	0.041	0.050	0.041
	June	-	-	-
	July	0.058	0.067	0.085
Q3	August	-	-	-
	September	-	-	-
	October	0.051	0.081	0.075
Q4	November	-	-	-
	December	-	-	-
LRAA (mg/L)		0.046	0.058	0.057
Meets MAC o	f 0.08 mg/L (80 µg/L)	Yes	Yes	Yes

Table A.4: Health-Related Parameters in the Guidelines for Canadian Drinking Water Quality

	MAC Raw Water				Treated Water		
Parameter		Sampling Period		Sampling Period			
	(mg/L)	August 30 ,2016	2022	2027	August 30 ,2016	2022	2027
Bacteria	None per 100 mL						-
Total Coliforms	None per 100 mL				_		-
E. coli	None per 100 mil	-	-		-	_	
Aluminum	2.9	-	-	-	<0.01	-	-
Antimony	0.006	-	-	-	<0.02	-	-
Arsenic	0.01	-	-	-	<0.02	-	-
Atrazine	0.005	-	-	-	<0.0005	-	-
Barium	2	-	-	-	0.112	-	-
Benzene	0.005	-	-	-	<0.001	-	-
Benzo[<i>a</i>]pyrene	0.00004	-	-	-	-	-	-
Boron	5	-	-	-	0.09	-	-
Bromate	0.01	-	-	-	<0.01	-	-
Bromoxynil	0.03	-	-	-	<0.0003	-	-
Cadmium	0.007	-	-	-	<0.0003	-	-
Carbon tetrachloride	0.002	-	-	-	<0.00056	-	-
Chlorate	1	-	-	-	0.24	-	-
Chlorite	1	-	-	-	<0.02	-	-
Chlorpyrifos	0.09	-	-	-	<0.001	-	-
Chromium	0.05	-	-	-	<0.02	-	-
Copper	2	-	-	-	<0.02	-	-
Cyanide	0.2	-	-	-	-	-	-
Cyanobacterial toxins	0.0015	-	-	-	-	-	-
Dicamba	0.11	-	-	-	<0.005	-	-
1,4-Dichlorobenzene	0.005	-	-	-	<0.001	-	-
1,2-Dichloroethane	0.005	-	-	-	< 0.002	-	-
1,1-Dichloroethylene	0.014	-	-	-	<0.002	-	-
Dichloromethane	0.05	-	-	-	-	-	-
2,4-Dichlorophenoxy acetic acid (2,4-D)	0.1	-	-	-	-	-	-
Dimethoate	0.02	-	-	-	-	-	-
1,4-Dioxane	0.05	-	-	-	-	-	-
Diquat	0.05	-	-	-	<0.05	-	-
Ethylbenzene	0.14	-	-	-	<0.02	-	-
Fluoride	1.5	-	_	-	-	_	_
Glyphosate	0.28	-	-	-	<0.15	-	-
Haloacetic acids - Total (HAAs)	0.08	-	_	_	0.045	_	_
_ead	0.005	-	_	_	< 0.005	_	_
Malathion	0.19	-	_	_	< 0.005	_	_
Manganese	0.12	-	_	_	<0.02	_	_
Mercury	0.001	-	-	-	< 0.00005	-	-
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	0.35	_	_	_	-	_	-

	МАС		Raw Water			Treated Water	
Parameter		Sampling Period			Sampling Period		
	(mg/L)	August 30 ,2016	2022	2027	August 30 ,2016	2022	2027
Metribuzin	0.08	-	-	-	<0.00025	-	-
Nitrate-Nitrogen	10	-	-	-	1.63	-	-
Nitrilotriacetic acid (NTA)	0.4	-	-	-	-	-	-
Nitrite-Nitrogen	1	-	-	-	-	-	-
N-Nitroso dimethylamine (NDMA)	0.00004	-	-	-	-	-	-
Pentachlorophenol	0.06	-	-	-	<0.001	-	-
Perfluorooctane Sulfonate (PFOS)	0.0006	-	-	-	-	-	-
Perfluorooactanoic Acid (PFOA)	0.0002	-	-	-	-	-	-
Selenium	0.05	-	-	-	<0.002	-	-
Strontium	7	-	-	-	0.032	-	-
Tetrachloroethylene	0.01	-	-	-	<0.001	-	-
Toluene	0.06	-	-	-	<0.002	-	-
Trichloroethylene	0.005	-	-	-	<0.001	-	-
2,4,6-Trichlorophenol	0.005	-	-	-	<0.0005	-	-
Trihalomethanes (THM)	0.1	-	-	-	0.075	-	-
Turbidity	See Approval	-	-	-	0.9	-	-
Uranium	0.02	-	-	-	<0.0014	-	-
Vinyl chloride	0.002	-	-	-	<0.0006	-	-
Xylenes (total)	0.09	-	-	-	<0.04	-	-

Table A.5: Guidelines for Monitoring Public Drinking Water Supplies

D	MAC	AO	Deres (2022)	The start (2002)	
Parameter	(mg/L)	(mg/L)	Raw (2022)	Treated (2022)	
Alkalinity			6	55	
Aluminium	0.1/0.2		.211	.070	
Ammonia			<.00003	<.00003	
Antimony	0.006		<.002	<.002	
Arsenic	0.01		<.002	<.002	
Barium	1		<.005	<.005	
Boron	5		<.005	.006	
Cadmium	0.005		<.00009	<.00009	
Calcium			.0014	.0016	
Chloride		≤250	.006	.010	
Chromium	0.05		<.001	<.001	
Colour		≤ 15 TCU	<5	<5	
Conductivity			36	207	
Copper		≤1.0	.650	<.050	
Fluoride	1.5		.00014	<.00012	
Hardness			3.5	4	
Iron		≤0.3	<.005	.650	
Lead	0.01		.0008	<.0005	
Magnesium			<.0008	<.0008	
Manganese	0.12	≤0.02	.087	.133	
Nitrate-nitrogen	10		<.00005	.00008	
рН		6.5-8.5	6.41	7.96	
Potassium			.0004	.0004	
Selenium	0.01		<.001	<.001	
Sodium		≤200	4	43	
Sulphate		≤500	<.002	.039	
Total Dissolved Solids		≤500	16	128	
Total Organic Carbon			9	1.9	
Turbidity			4.2	2.3	
Uranium	0.05		<.0002	<.0002	
Zinc		≤5	<.005	.083	

Table A.6.a -	Water	Withdrawal	Data
---------------	-------	------------	------

Raw Water Flow						
Month	Monthly Maximum Daily Rate (m³/d)	Monthly Average Daily Rate (m³/d)	Monthly Withdrawal Volume (m³)	Annual Withdrawal Volume (m³)		
January	785	498	15,428	-		
February	822	498	13,950	-		
March	707	487	15,082	-		
April	704	458	13,753	-		
Мау	737	501	15,532	-		
June	731	410	12,286	-		
July	744	567	17,582	-		
August	1190	663	20,562	-		
September	757	643	19,295	-		
October	744	573	17,771	-		
November	789	570	17,096	-		
December	748	596	18,475	-		
Total Annual Withdrawal				196,812		

Table A.6.b – Water Withdrawal Data Comparison to Approved Limits

Source – Cady Lake				
Specify Approved	Exceeds (Yes/No)			
Maximum Daily Rate (m³/day)	1125	No		
Average Daily Rate (m ³ /day)	700	No		
Volume (30 days) (m³)	-	-		
Volume (Annual) (m³)	-	-		

Table B.1: Membrane Filtration Direct Results *Not required for this system.*

Table B.2 - Filter Backwash Water – Discharges to A Freshwater Watercourse *Not required for this system.*

Table B.3: Filter Backwash Water – Discharge to Land or Soil *Not required for this system.*

Table B.4 - Filter Backwash Water – Discharge to A Marine Or Brackish Environment *Not required for this system.*

Table C.1: Operator in Direct Responsible Charge

The operator in overall direct responsible charge (ODRC) is: James Jenner

Signature of Operator: Date: June 30, 2023

Protocols in place during the absence of the operator in ODRC include:

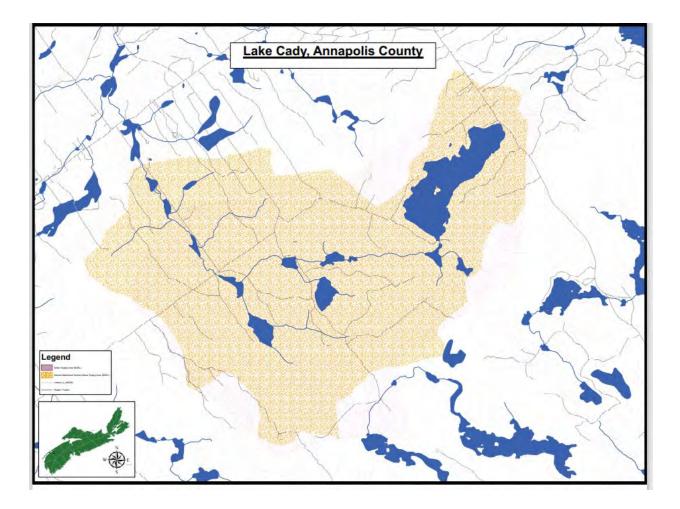
When on vacation:

There will be no changes made to any treatment process in the water treatment plants. Relief operators will maintain and monitor the treatment process and record all information.

When ill:

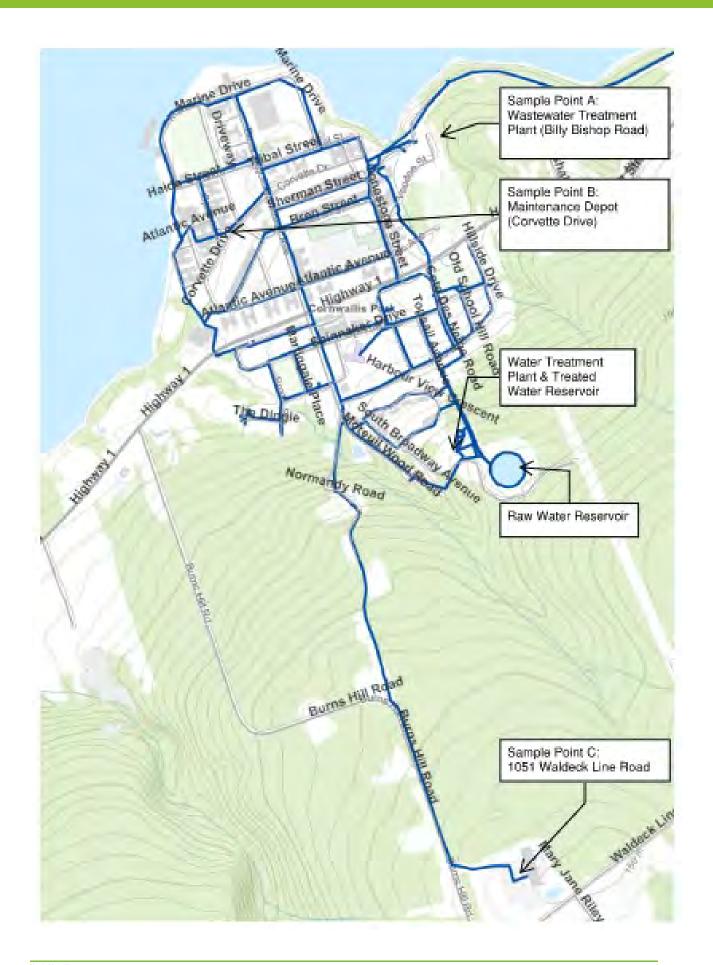
There will be no changes made to any treatment process in the water treatment plants. Relief operators will maintain and monitor the treatment process and record all information.

Other (specify):


There will be no changes made to any treatment process in the water treatment plants. Relief operators will maintain and monitor the treatment process and record all information.

APPENDIX B

Watershed Boundary Plan



APPENDIX C

Distribution Map

APPENDIX D

Corrosion Control Program Results

11 Morris Drive, Unit 122 Darlmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PO Box 100 Annapolis Royal, NS B0S1A0 (902) 532-3141 **ATTENTION TO: James Jenner PROJECT: Cornwallis Lead & Copper** AGAT WORK ORDER: 22X909305 WATER ANALYSIS REVIEWED BY: Sara Knox, Data Reviewer DATE REPORTED: Jun 22, 2022 PAGES (INCLUDING COVER): 5 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

Note	2	
	imer:	
	All work conducted herein has been done using accepted stan incorporate modifications from the specified reference method	dard protocols, and generally accepted practices and methods. AGAT test methods may s to improve performance.
	All samples will be disposed of within 30 days after receipt unk be exempt, please contact your Client Project Manager for det	ess a Long Term Storage Agreement is signed and returned. Some specialty analysis may
	AGAT's liability in connection with any delay, performance or n Ihird party. Unless expressly agreed otherwise in writing, AGA	and. ion-performance of these services is only to the Client and does not extend to any other T's liability is limited to the actual cost of the specific analysis or analyses included in the
• 13	services. This Certificale shall not be reproduced except in full, wilhout t	
	The test results reported herewith relate only to the samples a: Application of quidelines is provided "as is" without warranty of	s received by the laboratory. any kind, either expressed or implied, including, but not limited to, warranties of
		ement. AGAT assumes no responsibility for any errors or omissions in the guidelines

contained in this document. All reportable information as specified by ISO/IEC 17025 2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

E.

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APECA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

Page 1 of 5 AGAT Laboratories is accreditien to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation fnc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific driving water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

AGAT WORK ORDER: 22X909305 PROJECT: Cornwallis Lead & Copper ATTENTION TO: James Jenner SAMPLED BY:

		He	ealth Ca	anada Lead	& Copper	Sampling ·	Drinking Water	
ATE RECEIVED: 2022-06-17								DATE REPORTED: 2022-06-22
		SAMPI DATE SA	LE TYPE: AMPLED:	90 Hillside Drive Water 2022-06-14	406 Dingle Water 2022-06-14	149 Topsail Water 2022-06-14	108 Old School Water 2022-06-14	
Parameter	Unit	G/S	RDL	3990464	3990465	3990466	3990467	
Fotal Copper	ug/L	2000, 1000	2	9	5	19	7	
Fotal Lead - Health Canada	ug/L	5	0.5	<0.5	<0.5	< 0.5	<0.5	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

Page 2 of 5

Sara Kmox

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY

PROJECT: Cornwallis Lead & Copper SAMPLING SITE: AGAT WORK ORDER: 22X909305 ATTENTION TO: James Jenner SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Jun 22, 2022		0	UPLICAT	E		REFEREN	CE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE	
PARAMETER	Batch Sample		Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.5	ptable nits	Recovery Limits		
100 M 400 M 400 M	-	Id				1. 1	Value	Lower	Upper			Upper		Lower	Upper
Health Canada Lead & Copper	Sampling - D	rinking W	ater												
Total Copper	3984157		420	433	3.2%	<2	108%	80%	120%	108%	80%	120%	NA	70%	130%
Total Lead - Health Canada	3984157		2.2	2.3	NA	< 0.5	101%	80%	120%	107%	80%	120%	92%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Lara Knox

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests is a scalar of the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests is a scalar of the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests and the scalar of accreditation and parameter specific. A complete listing of parameters for sech location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. Results relate only to the items tested. Results apply to samples as received.

Page 3 of 5

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Method Summary

contract of the second of the second second		RDER: 22X909305 James Jenner
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
	MET121-6104 & MET-121-6105 MET121-6104 &	Per ATTENTION TO: SAMPLED BY: AGAT S.O.P LITERATURE REFERENCE MET121-6104 & modified from SM 3125/SM 3030 MET-121-6105 B/SM 3030 D MET121-6104 & modified from SM 3125/SM 3030

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 4 of 5

Л	GA'	Γ L	abora	tories webearth	agat	lab			C	Dartm	nout B3B	Drive h, NS 1M2 scom		Arriv Arriv Hold	al Co al Te Tim	e:	Use tion: eratu	Ire:	1G0	bod	15	Po	or (s	ee 1	note	5)	
sto	dy Record			,	: 90:	2.46	8.87	18	• F: 5	902.4	468.	8924					mber			X	10	19	2	2	2	_	1
he Ci	ounty of Annapolis		1. Name	Information (Please print): AMES JENNER				_	1.2			mat per		Not	es: (190	der.	14	ep	ad	4.	0	Ver	+0	mp		
JENN	IER		Email	Jenner@annapoliscounty.ca	-	_	_	-		Sar pag	mple	per	1	Turn	aro	und	Tim	e R	equ	uire	d (1	TAT)				122 JUN 17 84
JTH	BROADWAY		2. Name	e:	_	_		_		Mu	Itiple	8		Reg	lar	TAT		5 to	7 w	orki	ngo	days	5				
lis, N	S		Email	l	_	_	_	-	4] Sar pag		s per	b	Rusi	TAT	r.		Sam	e da	ay		110	lay				
0566	6 Fax:		Regulat	ory Requirements (Check):						Exc								2 da	ys				lays				
ornw	allis Lead and Copper		PIRI	idelines on Report Do not il					E	For	mat		1	Date	Req	uire	d:	_	_	_	_		_	_		_	
mber is	not provided cilent will be billed ful		Tie				oarse			king		er San	nple	. 2	Yes		No			_							
	napolis	Yes 🗆 / No 🛛		CDWQ	Г	1	able	1			T			_	T	T	T	T	T	Ī	OMF	T	T	T		Γ	Ī
annepoliscounty.ca 100 HRM 101 Res/Park RM 101							O Available				1			w low	5							1	WL				
	oyal NS B0S-1a0			Icultural Storm Water		Ja.				SSAD	3			10	ouat						NAMD	- United	2	1			
-144			- □FW - □Sec	AL	sred/Preserved	Standard Water Analysis	Total Diss		00800	a ms av		fotal Phosphorus		Rer 1: TPH/BTEX (PIRI) DIOW Iovel	Tier 2: TPH/BTEX Fractionation	UME-UNS IFTY BIEA					D P/A D	1.2	Feest Coliform 1 MDN	Other Health Canada Laad	Copper	Hazardous (Y/N)	
n	Date/Time Sampled	Sample Matrix	# Containers	Comments - Site/Sample Info. Sample Containment	Field Filte	Standard	Metals: 6 Total	Mercury	0800	SSI D	TKN	Total Pho	Phenols	Tier 1: Ti	Tier 2 Ti		THM	HAA	PAH	PCB	TC + EC	HDC	Foral Co	Other 1	Other:	Hazardo	
e	June 14	TAP	1													1		T	T			T	1				1
	June 14	TAP	1																			1			1.2	-	
_	June 14	TAP	1		-			-	-	-	-		-	_	-	+	-	-	-	-		+	-	1	1.1		
	June 14	tap	1		+	-		-	-	-	+		-	-	+	+	-	+	+	-	-	+	+	"	~	-	-
_					-								_				-			-			-	-			_
_			_			-		-	-	-	-		_	-	-	+	+	-	-	-	-	-	-	-	-	-	,
_		-	_		-	F		1	-	1	-			-	+	+	-	1	1	-	-	1	-	-	-	-	-
NE	R		ne 14	Samples Received By (Print Same):	1	2		_	-1	1	Dankyth	mie	_				py - Cl		Í	Pa	age			of	-]	
	rec	Ju	ne 14	Samples Received By (Sign)	/						Date/D	me					opy - A opy- A		Nº	:							

11 Morris Drive, Unit 122 Darlmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PO Box 100 Annapolis Royal, NS B0S1A0 (902) 532-3141 ATTENTION TO: James Jenner PROJECT: Cornwallis Thm's, Haa's Copper, SWA AGAT WORK ORDER: 22X917864 TRACE ORGANICS REVIEWED BY: Wendy Rose, Trace Organics Lab Technician WATER ANALYSIS REVIEWED BY: Sara Knox, Data Reviewer DATE REPORTED: Jul 19, 2022 PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any Information regarding this analysis please contact your client services representative at (902) 468-8718

*Not	25
lisc	aimer:
	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
	All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
	AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
	third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
21	This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
Π.	The test results reported herewith relate only to the samples as received by the laboratory. Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of

 Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document

contained in this document. • All reportable information as specified by ISO/IEC 17025 2017 is available from AGAT Laboratories upon reguest.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) Page 1 of 15

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation fnc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

Certificate of Annalyses AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner SAMPLED BY:

DATE RECEIVED: 2022-07-08								DATE REPORTED: 2022-07-19
			RIPTION: LE TYPE: AMPLED:	149 Topsail Water 2022-07-06	406 Dingle Water 2022-07-06	90 Hillside Water 2022-07-06	108 Old School Water 2022-07-06	
Parameter	Unit	G/S	RDL	4065920	4065922	4065923	4065924	
otal Copper	ug/L	2000, 1000	1	4	2	17	3	

Comments: RDL - Reported Detection Limit. G / S - Guideline / Standard: Refers to Canadian Dinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4065920-4065924 <- Values refer to Report Detection Limits. Analysis performed at AGAT Edmonton (unless marked by *)

Certified By:

Page 4 of 16

Sara Knox

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

CBCL

S AGAT L	abora	tories webearth.a	gati					Dar		B 1M	NS A2	An	ival Ival	Tem	ditio	n: atur	e;	Go	3,	113	3. 2	21.2		s)
hain of Custody Record		P: 9	902	.46	8.8	718	• F:	90	2.46	8.89	24								Xc	11-	18	6	4	
eport Information	Report	Information (Please print):	-	-		1	R	epo	ort F	orm	at				Ver									
Company: Mun of the County of Annapolis	1. Nam	e: JAMES JENNER							Single			11	0	ole	4	10	10	2	-			_		
Contact: JAMES JENNER	Ema	il: lenner@annapoliscounty.ca		_	_	_	1	3	Samp	le pe	er	Tu	rna	rou	nd T	Ime	R	aqu	irec	I (TA	AT)			
Address: 490 SOUTH BROADWAY	2. Nam	e:		_					Aultin	ale		Re	gula	ar TA	T	75	to 7	we	orkin	g da	NS.			
Cornwallis, NS	Ema	i:	_		_	_	1	1 5	Samp		er		sh T					da		-				
Phone: 902-526-0566 Fax:	Regula	Regulatory Requirements (Check): Excel																	y	12	day	JL.	8	8:
Client Project #: Cornwallis Thm's, Haa's Copper, SWA	List Guidelines on Report Do not list Guidelines on Report Format											□ 2 days □ Śrdays												
GAT Quotation:		PIRI included Tier 1 Res Pot Coarse Tier 2 Com N/Pot Fine Drinking Water Samp										Da	te R	equi	ed;	-	-	-	_	-			_	
lease Note: If quotation number is not provided client will be billed full price for analysia.												nple: 🗹 Yes 🖾 No												
voice To Same Yes 🗆 / No 🗆	Ga	s 🗆 Fuel 🗆 Lube	_	_		_	Re	eg. N	lo.:			_	_	_		_	_	_			-			
company; County of Annapolis	CCME	CCME CDWQ CIndustrial NSESQ-Cont. Sites Commercial HRM 101 Res/Park CISUEN Water											1							T	T	T	T	Т
ontact: alewis@annapoliscounty.ca												Te								UMF		4.	g	
ddress: PO Box 100												ow len	tion									IWE	Lee	
Annapolis Royal NS B0S-1a0		L Storin water										00	tiona							NAMICI	onas	z	ada	
hone: 902-532-1445 Fax:												BI9	Frac	BTEX							mobi	NAM	E Cal	
0/Credit Card#:		Sediment Other Other Other							- unote		/BTD	(BTB)	Hat						V/J	D Pseudomonas	mo	Health Canada Lead Copper	NIN	
Sample Identification Date/Time Sampled Sample Matrix	Containers	Standard Water Analysis	Metals: © Total Diss	Mercury	CI BOD	H	0	Total Phoenhouse	Phenols	Tier 1: TPH/BTEX (PIRI) [] IOW IEVEI	Tier 2: TPH/BTEX Fractionation	COME-OWS TPH/BTEX	VOC	WHI	HAA	PAH	PC8		CIHPC	Fecal Coliform	Other: Co	Hazardous (Y/N)		
	_		_	_	-	-		-	-	-	-	-	-			-				-	+	-	-	-
149 Topsail July 6 Tap	t		-		-	-	_	-		-	-		-			-	_			1	+	+	1	-
406 Dingle July 6 Tap	1				1					1	1	1								1	+	+	1	-
90 Hill side July 6 Tap	1					-																	1	
108 Old school July 6 Tap Treated Cwtp July 5 Tap	1		-	-	-	-	_		-	-											-	1	1	
Treated Cwtp July 5 Tap Raw lake cady July 5 Lake	9		-	1	-	-	-	-	-	-	-	+	-			1	1			-	+	+	-	+
Lake	0		+	-	+		-	1	+	+	-	-	-	-	+	~	1	-	H	-	+	+	+	+
ine Rollinguated Br (Diritham).																						1		1
MES JENNER July	6	Samples Received By (Pont Name)			/	7			Data	7638			. 10		copy -		-		Pag	je [of		1
and Service Internet	6 Samples Reading 57, 1897 Damy Time									Yellow Copy - AGAT White Copy - AGAT N ⁰ :														

APPENDIX E

Last Round of Sampling Data for *GCDWQ*

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PO Box 100 Annapolis Royal, NS B0S1A0 (902) 532-3141 **ATTENTION TO: James Jenner** PROJECT: IMAC AGAT WORK ORDER: 16X119322 FOOD CHEMISTRY REVIEWED BY: Philippe Morneau, chimiste TRACE ORGANICS REVIEWED BY: Jennifer Patterson, Organics Supervisor WATER ANALYSIS REVIEWED BY: Jason Coughtrey, Operation Manager DATE REPORTED: Aug 30, 2016 PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (902) 468-8718

1.24	iaimer:
C	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
G	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
c	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
c	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressily agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressily agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
G	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
G	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage lime. AGAT's liability in connection with any delay, pedformance or on-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services. This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratones.
G	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time. AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services. This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories. The test results reported herewith relate only to the samples as received by the laboratory.
ĸ	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance. All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage lime. AGAT's liability in connection with any delay, performance or one-performance of these services is only to the Client and does not extend to any other third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services. This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of All (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) iation of Professional Engineers and Geoscientists of Alberta AGAT Laboratones is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests isled on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

CLIENT NAME: MUNICIPA SAMPLING SITE:		oratorie Dunty	25	Certificate of Analysis AGAT WORK ORDER: 16X119322 PROJECT: IMAC ATTENTION TO: James Jenner SAMPLED BY:	11 Morris Drive, Unit 122 Dartmouth, Nova Sotia CANADA B3B 1M2 TEL (902)468-8714 FAX (902)468-8924 http://www.agatlabs.com
			Gly	yphosate (Montreal) (ug/L)	
DATE RECEIVED: 2016-07-2	5			DATE REPORT	ED: 2016-08-30
Parameter	Unit	CRIPTION: IPLE TYPE: SAMPLED: RDL	Cornwalli Treated Water 2016-07-2 7729604	5	
Glyphosate	ug/L	15	<15		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard Analysis performed at AGAT Montreal (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Results relate only to the items tested. Results apply to samples as received.

Page 2 of 19

felour E

11 Morris Drive, Unit 122 Dartmouth, Nova Scotla CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE: ATTENTION TO: James Jenner SAMPLED BY:

				SAMPLED BT:
	С	anadian	Drinking Water MAC Pa	ckage (Carb./Urea Pest)
5				DATE REPORTED: 2016-08-30
	SAMP	PLE TYPE:	Cornwallis Treated Water 2016-07-25	
Unit	GIS	RDL	7729604	
µg/L		0.15	<0.15	
µg/L		2	<2	
µg/L		5	<5	
µg/L		5	<5	
µg/L		10	<10	
	Unit µg/L µg/L µg/L µg/L	5 SAMPLE DES: SAM DATE 5 Unit G / S μg/L μg/L μg/L μg/L	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G/S RDL Upit G/S RDL 2 Upit 2 ygl 5 upit 5 5 ypit 5	Cornwallis SAMPLE DESCRIPTION Treated SAMPLE DESCRIPTON Water DATE SAMPLED: 2016-07-25 Unit G / S RDL 7728604 µg/L 0.15 <0.15

Comments

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2023-01 Guidelino values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed within AGAT's internal laboratory network.

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate only to the items tested. Results apply to samples as received.

Page 3 of 19

J. Patterson

🔛 (AG)	AI	Labo	oratorio		Certificate of Analysis AGAT WORK ORDER: 16X119322 PROJECT: IMAC	11 Morris Drive, Unit 122 Dartmouth, Nova Scotis CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com
CLIENT NAME: MUNICIPALIT SAMPLING SITE:	Y OF ANI	NAPOLIS CO	UNTY		ATTENTION TO: James Jenner SAMPLED BY:	http://www.agauabs.com
			Canad	ian Drink	ing Water MAC Package (Diq./Paraq.)	
DATE RECEIVED: 2016-07-25					DATE REPORTED): 2016-08-30
Parameter	Unit		CRIPTION: IPLE TYPE: SAMPLED: RDL	Cornwallis Treated Water 2016-07-25 7729604		
Diquat	µg/L	70	5	<5		
Paraguat	µg/L		1	<1		

Guideline values are for general reference only. The guidelines 7729604 Analysis performed within AGAT's internal laboratory network Analysis performed at AGAT Toronto (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate only to the items tested. Results apply to samples as received. J. Patterson Page 4 of 19

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE: ATTENTION TO: James Jenner SAMPLED BY:

Cornwallis RIPTION: Treated ETYPE: 2016-07-25 RDL 7729604 1.7 <1.7 0.3 <0.3 0.2 23.6 0.2 3.1 0.1 <0.1 4.0 39.2 0.5 <0.5 0.3 <0.3 0.05 <0.05 0.05 <0.05	DATE REPORTED: 2016-08-30
RIPTION: Treated E TYPE: Water NPLED: 2016-07-25 RDL 7729604 17 <17 0.3 <0.3 0.2 23.6 0.2 12.5 0.2 3.1 0.1 <0.1 4.0 39.2 0.5 <0.05 0.05 <0.05 0.05 <0.3 0.05 <0.05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.3 <0.3 0.2 23.6 0.2 12.5 0.2 3.1 0.1 <0.1 4.0 39.2 0.5 <0.5 0.05 <0.5 0.3 <0.3 0.3 <0.3	
0.2 23.6 0.2 12.5 0.2 3.1 0.1 <0.1	
0.2 12.5 0.2 3.1 0.1 <0.1	
0.2 3.1 0.1 <0.1	
0.1 <0.1 4.0 39.2 0.5 <0.5 0.05 <0.05 0.3 <0.3 0.05 <0.05	
4.0 39.2 0.5 <0.5	
0.5 <0.5	
0.05 <0.05 0.3 <0.3 0.05 <0.05	
0.3 <0.3 0.05 <0.05	
0.05 <0.05	
0.05 <0.05	
1 <1	
5 <5	
0.5 <0.5	
0.05 <0.05	
0.5 <0.5	
0.5 <0.5	
0.05 <0.05	
0.05 <0.05	
0.05 <0.05	
0.1 <0.1	
0.5 <0.5	
1.5 <1.5	
0.7 <0.7	
1 <1	
1 <1	
1 <1	
	0.7 <0.7 1 <1 1 <1

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relete crity to the items tested. Results exply to samples as received.

Page 5 of 19

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE: ATTENTION TO: James Jenner SAMPLED BY:

DATE RECEIVED: 2016-07-25					DATE REPORTED: 2016-08-30
			CRIPTION: PLE TYPE: SAMPLED:	Cornwallis Treated Water 2016-07-25	
Parameter	Unit	GIS	RDL	7729604	
Parathion	µg/L		1	<1	
Azinophos	µg/L	20	2	<2	
Benzo(a)pyrene	mg/L	0.00004	0.00001	<0.00001	
Frifluralin	µg/L		1	<1	
Simazine	µg/L		1	<1	
Atrazine	µg/L		0.5	<0.5	
Atrazine + N-dealkylated metabolites	µg/L	5	1	<1	
Metribuzin	µg/L	80	0.25	<0.25	
Cyanazine	µg/L		1	<1	
Vetolachlor	µg/L		1	<1	
/inyl Chloride	ug/L	2	0.6	<0.6	
Chloroethane	ug/L		5	<5	
1,1-Dichloroethylene	ug/L	14	2	<2	
Vethylene Chloride Dichloromethane)	ug/L	50	2	<2	
Methyl-t-Butyl-Ether (MTBE)	ug/L	15 AO	2	<2	
Chloroform	ug/L		1	55	
.2-Dichloroethane	ug/L	5	2	<2	
Carbon Tetrachloride	ug/L	2	1	<1	
Benzene	ug/L	5	1	<1	
Frichloroethylene	ug/L	5	1	<1	
Bromodichloromethane	ug/L		1	9	
Toluene	ug/L	60, 24 AO	2	<2	
Dibromochloromethane	ug/L		1	<1	
Tetrachloroethylene	µg/L		1	<1	
Chlorobenzene	ug/L	80. 30 AO	1	<1	
Ethylbenzene	ug/L	140.1.6 AO	2	<2	
Bromoform	ug/L		1	<1	
Xylenes (Total)	ug/L	300 AO	4	<4	

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate crity to the items tested. Results exply to samples as received.

Page 6 of 19

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

DATE RECEIVED

ATTENTION TO: James Jenner SAMPLED BY:

				and and a second provide the second sec	SAMI LED DT.
	C	anadian Drin	king Wate	MAC Package (HAAs, Herbicides, O	C Pest, Triaz. Pest, OP Pest., VOCs)
D: 2016-07-25					DATE REPORTED: 2016-08-30
				Cornwallis	
		SAMPLE DES	CRIPTION:	Treated	
		SAM	PLE TYPE:	Water	
		DATE	SAMPLED:	2016-07-25	
neter	Unit	G/S	RDL	7729604	

		AMPLED	2016-07-25		
Unit	G/S	RDL	7729604		
ug/L	5, 1 AO	1	<1		
ug/L		1	<1		
ug/L	100	1	64		
Unit	Acceptabl	e Limits			
%	50-1	30	103		
%.	60-1	30	94		
%	60-1	30	91		
	ug/L ug/L Ug/L Vnit %	ug/L 5, 1.AO ug/L ug/L 100 Unit Acceptabl % 50-1 % 60-1	ug/L 5, 1 AO 1 ug/L 1 1 ug/L 100 1 Unit Acceptable Limits % 50-130 % 60-130	ug/L 5, 1 AO 1 <1	ug/L 5,1 AO 1 <1 ug/L 1 <1 ug/L 100 1 64 Unit Acceptable Limits % 50-130 103 % 60-730 94

L Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2023-01 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

J. Patterson Page 7 of 19

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

CBCL

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE: ATTENTION TO: James Jenner SAMPLED BY:

		Canac	lian Dri	nking Water MA	AC Package (Metals, Hg & Inorga	nics)
DATE RECEIVED: 2016-07-2	25				and the second second	DATE REPORTED: 2016-08-30
Parameter	Unit		RIPTION: LE TYPE: AMPLED: RDL	Cornwallis Treated Water 2016-07-25 7729604		
Total Aluminum	ug/L	2900, 100	10	83		
Total Antimony	ug/L	6	2	<2		
Total Arsenic	ug/L	10	2	<2		
Total Barium	ug/L	2000	5	<5		
Total Boron	ug/L	5000	5	<5		
Total Cadmium	ug/L	7	0.3	<0.3		
Total Chromium	ug/L	50	2	<2		
Total Copper	ug/L	2000, 1000	2	<2		
Total Iron	ug/L	300 AO	50	<50		
Total Lead	ug/L	5	0.5	<0.5		
Total Manganese	ug/L	120, 20 AO	2	17		
Total Selenium	ug/L	50	2	<2		
Total Uranium	ug/L	20	0.1	<0.1		
Total Zinc	ug/L	5000 AO	5	38		
Total Sodium	mg/L	200 AO	0.1	63.4		
Mercury	ug/L	1	0.05	<0.05		
pH		7.0-10.5		8.13		
Turbidity	NTU	1.0	0.1	0.6		
True Color	TCU	15 AO	5	10		
Chloride	mg/L	250 AO	1	23		
Fluoride	mg/L	1.5	0.1	<0.1		
Nitrate as N	mg/L	10	0.05	0.06		
Sulphate	mg/L	500 AO	2	36		
Total Dissolved Solids	mg/L	500 AO	5	204		
Bromate	mg/L	0.01	0.01	<0.01		
Chlorine, Free	mg/L		0.50	1.45		
Chlorate	mg/L	1	0.02	0.07		
Chlorite	mg/L	1	0.02	<0.02		
Chloramines - Total	mg/L		0.1	0.1		
					Certified By:	Jason Congetting

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relete only to the items tested. Results exply to samples as received.

Page 8 of 19

CLIENT NAME: MUNICIPA SAMPLING SITE:			ratorie JNTY		Certificate of Analysis AGAT WORK ORDER: 16X119322 PROJECT: IMAC ATTENTION TO: James Jenner SAMPLED BY:	11 Morris Drive, Unit 122 Dartmouth, Nova Social CANADA B38 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agailabs.com
		Cana	dian Drin	nking Wa	ater MAC Package (Metals, Hg & Inorganics)	
DATE RECEIVED: 2016-07-2	5				DATE REPORTED:	2016-08-30
		DATE S	LE TYPE:	Cornwallis Treated Water 2016-07-25		
Parameter	Unit	G/S 0.05 AO	RDL 0.05	7729604 <0.05		
Sulphide Cyanide, Free	mg/L mg/L	0.05 AU	0.002	<0.002		

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Canadian Drinking Water Cuality - updated 2023-01 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the infended use. Refer directly to the applicable standard for regulatory interpretation. 729504 Subplide and Cyanide were analysed at AGAT Mississauga. Analysis performed at AGAT Halifax (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Jasar Cocogniting Page 9 of 19

Results relate only to the items tested. Results apply to samples as received.

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

ATTENTION TO: James Jenner SAMPLED BY:

		c	anadiar	Drinking Water MAC Package	(Radiochemistry)
DATE RECEIVED: 2016-07-25				a second second second	DATE REPORTED: 2016-08-30
			Arr 3. 1	Cornwallis	
		SAMPLE DES	CRIPTION:	Treated	
		SAM	PLE TYPE:	Water	
	SAMPLE DESCRIPTION: Trea SAMPLE TYPE: Wat DATE SAMPLED: 2016-0	2016-07-25			
Parameter	Unit	G/S	RDL	7729604	
Radionuclides - Gross Alpha	Bq/L	0.5	0.08	<0.08	
Radionuclides - Gross Beta	Bg/L	1.0	0.01	0.05	

Com Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2023-01
 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
 Analysis performed at AGAT Halifax (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate only to the items tested. Results apply to samples as received.

Page 10 of 19

Jasar Cocapiting

Certificate of Analysis AGAT WORK ORDER: 16X119322

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

ATTENTION TO: James Jenner SAMPLED BY:

Canadian Drinking Water MAC Package (Subcontracted) DATE RECEIVED: 2016-07-25 DATE REPORTED: 2016-08-30 ornwalli SAMPLE DESCRIPTION: Treated Water 2016-07-25 7729604 SAMPLE TYPE: DATE SAMPLED: G/S RDL Parameter Nitriloacetic Acid (NTA) Microcystin - LR N-Nitrosodimethylamine (NDMA) Unit G/S
 0.4
 0.03

 1.5
 0.05

 0.04
 0.0008
 mg/L ug/L ug/L <0.03 <0.05 <0.0008

PROJECT: IMAC

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2023-01
Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.
728064
Analysis performed at AGAT Halifax (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate only to the items tested. Results apply to samples as received.

Page 11 of 19

Jason Cocogniting

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: IMAC SAMPLING SITE: AGAT WORK ORDER: 16X119322 ATTENTION TO: James Jenner SAMPLED BY:

OPA.

			Food	d Che	mist	ry A	nalys	is							
RPT Date: Aug 30, 2016			C	UPLICAT	E	1.	REFEREN	CE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	Recovery	Acceptab Limits	
PARAMETER	Daten	Id			20	1.	Value	Lower	Upper			Upper			Upper
Glyphosate (Montreal) (ug/L) Glyphosate	727	NA	< 15	< 15	0.0%	< 15	106%	70%	130%	106%	70%	130%	99%	70%	130%

Certified By: AGAT QUALITY ASSURANCE REPORT (V1) Page 12 of 19 AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation for Laboratory Accreditation inc. (CALA) for specific tests inst. Accenditations are location and parameter specific. A complete listing of parameters for each location is available form www.cala.ca.and/or www.scc.a...The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. Results relate only to the items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: IMAC

SAMPLING SITE:

AGAT WORK ORDER: 16X119322 **ATTENTION TO: James Jenner** SAMPLED BY:

			Trac	ce Or	gani	cs Ar	naiys	IS							
RPT Date: Aug 30, 2016			r	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	Dup#1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		ptable nits	Recovery	Acceptabl Limits	
And sugar a		Id			19	1.	Value	Lower	Upper		Lower	Upper		Lower	Upper
Canadian Drinking Water MA	C Package (Ca	rb./Urea F	est)			-		-				100		-	
Aldicarb	7734830		< 0.15	< 0.15	NA	< 0.15	113%	60%	140%	99%	60%	140%	101%	60%	140%
Bendiocarb	7734830		< 2	< 2	NA	< 2	97%	60%	140%	84%	60%	140%	82%	60%	140%
Carbofuran	7734830		< 5	< 5	NA	< 5	97%	60%	140%	84%	40%	130%	82%	30%	150%
Carbaryl	7734830		< 5	< 5	NA	< 5	105%	60%	140%	112%	40%	130%	101%	30%	150%
Diuron	7734830		< 10	< 10	NA	< 10	107%	60%	140%	114%	60%	140%	101%	30%	150%
Canadian Drinking Water MA	C Package (Dic	/Paraq.)													
Diquat	7728844		< 5	< 5	NA	< 5	98%	60%	140%	85%	60%	140%	87%	60%	140%
Paraquat	7728844		< 1	< 1	NA	< 1	98%	60%	140%	83%	60%	140%	83%	60%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

AGAT QUALITY ASSURAN		OPTOM			-						_	_		Page 13	
Malathion	1	7728844	<1	<1	0.0%	<1	95%	70%	130%	92%	40%	130%	NA	40%	130
Diazinon	1	7728844	<1	< 1	0.0%	<1	101%	70%	130%	104%	40%	130%	NA	40%	130
Chlorpyrifos	1	7728844	< 1	< 1	0.0%	< 1	103%	70%	130%	93%	40%	130%	NA	40%	130
Terbufos	1	7728844	< 0.7	< 0.7	0.0%	< 0.7	101%	70%	130%	91%	40%	130%	NA	40%	130
Dimethoate	1	7728844	< 1.5	< 1,5	0.0%	< 1.5	101%	70%	130%	82%	40%	130%	NA	40%	13
Phorate		7728844	< 0.5	< 0.5	0.0%	< 0.5	99%	70%	130%	95%	40%	130%	NA	40%	13
Methoxychlor	1	7764178	< 0.1	< 0.1	0.0%	< 0.1	92%	60%	130%	96%	70%	130%	91%	60%	13
Dieldrin	1	7764178	< 0.05	< 0.05	0.0%	< 0.05	94%	70%	130%	115%	60%	130%	114%	60%	13
Ndrin	1	7764178	< 0.05	< 0.05	0.0%	< 0.05	100%	70%	130%	104%	60%	130%	102%	60%	13
2,4,6-Trichlorophenol	1	7728940	< 0.5	< 0.5	0.0%	< 0.5	86%	70%	130%	103%	60%	130%	NA	60%	13
2,3,4,6-Tetrachlorophenol	1	7728940	< 0.5	< 0.5	0.0%	< 0.5	114%	70%	130%	113%	60%	130%	NA	60%	13
Picloram	1	7728940	< 0.05	< 0.05	0.0%	< 0.05	106%	70%	130%	83%	60%	130%	NA	60%	13
Pentachlorophenol	1	7728940	< 0.5	< 0.5	0.0%	< 0.5	98%	70%	130%	88%	60%	130%	NA	60%	13
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	1	7728940	< 5	< 5	0.0%	< 5	120%	70%	130%	83%	60%	130%	NA	60%	13
Dinoseb	1	7728940	< 1	< 1	0.0%	< 1	115%	70%	130%	86%	60%	130%	NA	60%	13
Diclofop Methyl	1	7728940	< 0.05	< 0.05	0.0%	< 0.05	117%	70%	130%	76%	60%	130%	NA	60%	13
2,4-Dichlorophenoxyacetic acid 2,4-D)	1	7728940	< 0.05	< 0.05	0.0%	< 0.05	95%	70%	130%	87%	60%	130%	NA	60%	13
2,4-Dichlorophenol	1	7728940	< 0.3	< 0.3	0.0%	< 0.3	106%	70%	130%	76%	60%	130%	NA	60%	13
Dicamba	1	7728940	< 0.05	< 0.05	0.0%	< 0.05	110%	70%	130%	81%	60%	130%	NA	60%	13
Bromoxynil	1	7728940	< 0.5	< 0.5	0.0%	< 0.5	101%	70%	130%	74%	60%	130%	NA	60%	13
Dibromoacetic Acid	1	7735938	< 0.1	< 0.1	0.0%	< 0.1	100%	70%	130%	72%	60%	130%	115%	70%	13
Bromochloroacetic Acid	1	7735938	4.6	4.2	9.1%	< 0.2	90%	70%	130%	90%	60%	130%	105%	70%	13
Frichloroacetic Acid	1	7735938	56,0	52.6	6.3%	< 0.2	77%	70%	130%	73%	60%	130%	115%	70%	13
Dichloroacetic Acid	1	7735938	69.8	64.2	8.4%	< 0.2	87%	70%	130%	109%	60%	130%	79%	70%	13
Bromoacetic Acid	1	7735938	< 0.3	< 0.3	0.0%	< 0.3	80%	70%	130%	97%	60%	130%	112%	70%	13
Chloroacetic Acid	1	7735938	< 1.7	< 1.7	0.0%	< 1.7	85%	70%	130%	96%	60%	130%	105%	70%	13

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation for Laboratory Accreditation Inc. (CALA) for specific tests tests accredited in the scope of accreditation and parameter specific. A complete listing of parameters for each location is available form www.cala.ca.and/or www.scc.a.The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. Results relate only to the items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: IMAC SAMPLING SITE:

AGAT WORK ORDER: 16X119322 **ATTENTION TO: James Jenner** SAMPLED BY:

		Trace	Org	anics	Ana	alysis	(Cor	ntin	ued)					
RPT Date: Aug 30, 2016			DUPLICATE			REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	RPD Method Blank M	Acceptable Measured Limits		Acceptable Recovery Limits		Recovery Limits				
a the second of		(u			YC		Value	Lower	Upper		Lower	Upper		Lower	Uppe
Parathion	1	7728844	<1	< 1	0.0%	< 1	82%	70%	130%	90%	40%	130%	NA	40%	130
Azinophos	1	7728844	< 2	< 2	0.0%	<2	92%	70%	130%	123%	40%	130%	NA	40%	130
Benzo(a)pyrene	1	7733106 -	0.00001	< 0,00001	0.0%	< 0.0000*	1 87%	50%	140%	80%	50%	140%	61%	50%	140
Trifluralin	1	7729134	<1	< 1	0.0%	< 1	105%	50%	140%	107%	50%	140%	NA	50%	140
Simazine	1	7729134	<1	<1	0.0%	<1	92%	50%	140%	112%	50%	140%	NA	50%	140
Atrazine	1	7729134	< 0.5	< 0.5	0.0%	< 0.5	98%	50%	140%	106%	50%	140%	NA	50%	140
Atrazine + N-dealkylated metabolites	1	7729134	< 1	<1	0.0%	<1	102%	50%	140%	102%	50%	140%	NA	50%	140
Metribuzin	1	7729134	< 0.25	< 0.25	0.0%	< 0.25	90%	50%	140%	107%	50%	140%	NA	50%	140
Cyanazine	1	7729134	< 1	< 1	0.0%	<1	88%	50%	140%	75%	50%	140%	NA	50%	140
Metolachlor	1	7729134	<1	<1	0.0%	<1	93%	50%	140%	106%	50%	140%	NA	50%	140
Vinyl Chloride	4	7733101	< 0.6	< 0.6	0.0%	< 0.6	97%	70%	130%	126%	60%	140%	114%	60%	140
Chloroethane	1	7733101	< 5	< 5	0.0%	< 5	110%	70%	130%	102%	60%	140%	110%	60%	140
1,1-Dichloroethylene	1	7733101	<2	<2	0.0%	<2	98%	70%	130%	107%	60%	140%	109%	60%	140
Methylene Chloride (Dichloromethane)	1	7733101	<2	<2	0.0%	<2	105%	70%	130%	109%	60%	140%	111%	60%	140
Methyl-t-Butyl-Ether (MTBE)	1	7733101	< 2	< 2	0.0%	<2	95%	60%	140%	97%	60%	140%	99%	60%	140
Chloroform	1	7733101	<1	< 1	0.0%	<1	102%	70%	130%	107%	60%	140%	110%	60%	140
1,2-Dichloroethane	1	7733101	<2	< 2	0.0%	<2	101%	70%	130%	107%	60%	140%	114%	60%	140
Carbon Tetrachloride	1	7733101	<1	< 1	0.0%	<1	100%	70%	130%	109%	60%	140%	109%	60%	140
Benzene	1	7733101	<1	<1	0.0%	<1	101%	70%	130%	111%	70%	130%	115%	70%	130
Trichloroethylene	1	7733101	<1	< 1	0.0%	<1	100%	60%	130%	111%	60%	140%	114%	60%	140
Bromodichloromethane	1	7733101	<1	< 1	0.0%	< 1	100%	70%	130%	100%	60%	140%	103%	60%	140
Toluene	1	7733101	<2	< 2	0.0%	< 2	103%	70%	130%	110%	60%	140%	112%	60%	140
Dibromochloromethane	1	7733101	< 1	< 1	0.0%	< 1	118%	70%	130%	99%	60%	140%	104%	60%	140
Tetrachloroethylene	1	7733101	<1	< 1	0.0%	< 1	101%	70%	130%	108%	60%	140%	109%	60%	140
Chlorobenzene		7733101	<1	< 1	0.0%	< 1	103%	70%	130%	106%	60%	140%	111%	60%	140
Ethylbenzene	1	7733101	< 2	< 2	0.0%	< 2	101%	70%	130%	107%	60%	140%	111%	60%	140
Bromoform	1	7733101	< 1	< 1	0.0%	< 1	101%	70%	130%	104%	60%	140%	111%	60%	140
Xylenes (Total)	1	7733101	< 4	< 4	0.0%	<4	103%	60%	140%	108%	60%	140%	113%	60%	140
1,4-Dichlorobenzene	1	7733101	<1	< 1	0.0%	<1	107%	70%	130%	104%	60%	140%	117%	60%	140
1,2-Dichlorobenzene	4	7733101	<1	<1	0.0%	<1	113%	70%	130%	117%	60%	140%	124%	60%	140

Certified By:

J. Patterson

Page 14 of 19

AGAT QUALITY ASSURANCE REPORT (V1) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific A complete listing of parameters for each location is available from www.sci.ac.a. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. Results reliate only to the Items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: IMAC

SAMPLING SITE:

AGAT WORK ORDER: 16X119322 ATTENTION TO: James Jenner SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Aug 30, 2016	6 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX S					RIX SPIKE									
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery		ptable nits	Recovery		eptable mits
	1.107	10			1.4	1	value	Lower	Upper		Lower	Upper		Lower	Uppe
Canadian Drinking Water MA	C Package (M	etals, Hg &	& Inorgani	cs)		1.1				-					
Total Aluminum	7262016		18	26	NA	< 10	91%	80%	120%	120%	80%	120%	124%	70%	130%
Total Antimony	7262016		< 2	< 2	NA	< 2	80%	80%	120%	107%	80%	120%	94%	70%	1309
Total Arsenic	7262016		< 2	< 2	NA	<2	86%	80%	120%	99%	80%	120%	86%	70%	130%
Total Barium	7262016		94	98	4.2%	< 5	96%	80%	120%	95%	80%	120%	110%	70%	130%
Total Boron	7262016		10	8	NA	< 5	113%	80%	120%	119%	80%	120%	105%	70%	130%
Total Cadmium	7262016		< 0.017	< 0.017	NA	< 0.3	100%	80%	120%	103%	80%	120%	100%	70%	1309
Total Chromium	7262016		< 1	< 1	NA.	<2	80%	80%	120%	83%	80%	120%	71%	70%	1309
Total Copper	7262016	÷	<1	<1	NA	<2	80%	80%	120%	95%	80%	120%	103%	70%	130%
Total Iron	7262016		452	451	0.2%	< 50	106%	80%	120%	90%	80%	120%	73%	70%	130%
Total Lead	7262016		< 0.5	< 0.5	NA	< 0.5	110%	80%	120%	113%	80%	120%	114%	70%	1309
Total Manganese	7262016		90	94	4.3%	< 2	104%	80%	120%	104%	80%	120%	117%	70%	1309
Total Selenium	7262016		< 1	< 1	NA	<2	98%	80%	120%	97%	80%	120%	92%	70%	130%
Total Uranium	7262016		< 0,1	< 0.1	NA	< 0.1	112%	80%	120%	113%	80%	120%	122%	70%	130%
Total Zinc	7262016		< 5	< 5	NA	< 5	107%	80%	120%	99%	80%	120%	114%	70%	130%
Total Sodium	7262016	21	2.4	2.4	0.0%	< 0.1	102%	80%	120%	88%	80%	120%	85%	70%	130%
pH	7729136		7.45	7.41	0.5%	<	102%	80%	120%	NA	80%	120%	NA	80%	120%
Turbidity	1	7733940	1.5	1.4	6.9%	< 0.1	102%	80%	120%		80%	120%		80%	120%
True Color	1	7733740	17	15	NA	< 5	120%	80%	120%		80%	120%		80%	120%
Chloride	7730562		15	16	6.5%	<1	94%	80%	120%	NA	80%	120%	NA	80%	120%
Fluoride	7730562		<0.1	<0,1	NA	< 0.1	113%	80%	120%	NA	80%	120%	114%	80%	120%
Nitrate as N	7730562		<0.05	<0.05	NA	< 0.05	95%	80%	120%	NA	80%	120%	117%	80%	120%
Sulphate	7730562		3	3	NA	< 2	100%	80%	120%	NA	80%	120%	92%	80%	120%
Total Dissolved Solids	1	4122	998	982	1.6%	< 5	114%	80%	120%		80%	120%		80%	120%
Bromate	7728940		<0.01	<0.01	NA	< 0.01	106%	70%	130%	NA	70%	130%	103%	70%	130%
Chlorine, Free	4	7729342	<0.50	<0.50	NA	< 0.50	117%	70%	130%		130%	130%		70%	130%
Chlorate	7728940		<0.02	<0.02	NA.	< 0.02	109%	70%	130%	NA	70%	130%	102%	70%	1309
Chlorite	7728940		<0.02	<0.02	NA	< 0.02	113%	70%	130%	NA	70%	130%	109%	70%	130%
Sulphide	7730858		<0.05	<0.05	NA	< 0.05	100%	80%	120%	99%	85%	115%	99%	70%	130%
Cyanide, Free	7736889		<0,002	<0.002	NA	< 0.002	104%	90%	110%	103%	90%	110%	85%	70%	130%

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

Jasar Coughtry

AGAT QUALITY ASSURANCE REPORT (V1)
Page 15 of 19
AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests
listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation for Laboratory Accreditation Inc. (CALA) for specific fanking water
tests. Accreditation and parameter specific. A comptele listing of parameters for each location is available for www.cala.ca and/or www.scc.ac. The tests in this report may
not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Results relate only to the items leated. Results apply to samples as received.

Method Summary

ANNAPOLIS COUNTY	AGAT WORK O	RDER: 16X119322
	ATTENTION TO	James Jenner
	SAMPLED BY:	
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1.00	the second second second	
ORG-100-5115F	MA.403-GLYAMP 1.0 Modifée	HPLC
	AGAT S.O.P	ATTENTION TO SAMPLED BY: AGAT S.O.P LITERATURE REFERENCE

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 16 of 19

Method Summary

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY	÷
PROJECT: IMAC	
CAMPLING SITE	

AGAT WORK ORDER: 16X119322 ATTENTION TO: James Jenner

SAMPLING SITE:		SAMPLED BY:			
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Trace Organics Analysis					
Aldicarb	ORG-91-5101	EPA SW-632 531.1 & MOE E3389	HPLC		
Bendiocarb	ORG-91- 5101	EPA SW-632 531.1 & MOE E3389	HPLC		
Carbofuran	ORG-91-5101	EPA SW-632 531.1 & MOE E3389	HPLC		
Carbaryl	ORG-91-5101	EPA SW-632 531.1 & MOE E3389	HPLC		
Diuron	ORG-91-5101	EPA SW-632 531.1 & MOE E3389	HPLC		
Diquat	ORG-91-5102	EPA 549.1	HPLC		
Paraguat	ORG-91-5102	EPA 549.1	HPLC		
Chloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Bromoacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Dichloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Trichloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Bromochloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Dibromoacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD		
Haloacetic Acids	ORG-120-5110	EPA 552.3	GC/ECD		
2-Bromobutanoic acid	ORG-120-5110	EPA 552.3	GC/ECD		
Bromoxynil	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Dicamba	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
2.4-Dichlorophenol	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
2,4-Dichlorophenoxyacetic acld (2,4-D)	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Diclofop Methyl	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Dinoseb	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Pentachlorophenol	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Picloram	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
2,3,4,6-Tetrachlorophenol	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
2,4,6-Trichlorophenol	ORG-120-6111	modified from EPA SW846 8151A & EPA 515.1	GC/ECD		
Aldrin	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD		
Dieldrin	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD		
Aldrin + Dieldrin	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD		
Methoxychlor	ORG-120-5108	Based on EPA SW-846/6510 C-8080-8081 A	GC/ECD		
Phorate	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS		
Dimethoate	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS		
Terbufos	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS		
Chlorpyrifos	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS		

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 17 of 19

CBCL

Method Summary

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: IMAC SAMPLING SITE: AGAT WORK ORDER: 16X119322 ATTENTION TO: James Jenner SAMPLED BY:

SAMPLING SITE:	SAMPLED BY:										
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE								
Diazinon	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS								
Malathion	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS								
Parathion	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS								
Azinophos	ORG-120-6112	modified from EPA SW-846 3510C/8141A/8270C	GC/MS								
Benzo(a)pyrene	ORG-120-5104	EPA SW846/3510/8270C	GC/MS								
Trifluralin	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GC/MS								
Simazine	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GC/MS								
Atrazine	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GCANIS								
Atrazine + N-dealkylated metabolites	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GC/MS								
Metribuzin	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GC/MS								
Cyanazine	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GC/MS								
Metolachlor	ORG-120-6113	EPA SW-846 3510C/8270C and MOE E3121	GCIMS								
Vinyl Chloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Chloroethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
1,1-Dichloroethylene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Methylene Chloride (Dichloromethane)	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Methyl-t-Butyl-Ether (MTBE)	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Chloroform	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
1,2-Dichloroethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Carbon Tetrachloride	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Benzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Trichloroethylene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Bromodichloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Toluene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Dibromochloromethane	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Tetrachloroethylene	VOL-120-5001	EPA SW-846 5230B & 8260	(P&T)GC/MS								
Chlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Ethylbenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Bromoform	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
Xylenes (Total)	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
1.4-Dichlorobenzene	VOL-120-5001	EPA SW846 5230B/8260	GC/MS								
1,2-Dichlorobenzene	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS								
Total Trihalomethanes	VOL-120-5001	EPA SW846 5230/8260	GC/MS								
Toluene-d8	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS								
4-Bromofluorobenzene	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS								

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 18 of 19

Method Summary

CLIENT NAME: MUNICIPALITY OF PROJECT: IMAC SAMPLING SITE:		AGAT WORK ORDER: 16X119322 ATTENTION TO: James Jenner SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
	AGAT S.O.F	LITERATORE REFERENCE	ANALTTICAL TECHNIQUE					
Water Analysis Total Aluminum	MET121-6104 &	SM 3125	ICP/MS					
Total Antimony	MET-121-6105 MET121-6104 &	SM 3125	ICP/MS					
Total Arsenic	MET-121-6105 MET121-6104 &	SM 3125	ICP/MS					
Total Barium	MET-121-6105 MET121-6104 &	SM 3125	ICP/MS					
	MET-121-6105 MET121-6104 &							
Total Boron	MET-121-6105 MET121-6104 &	SM 3125	ICP/MS					
Total Cadmium	MET-121-6105	SM 3125	ICP/MS					
Total Chromium MET121-6104 & MET-121-6105		SM 3125	ICP/MS					
Total Copper	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Iron	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Lead	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Manganese	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Selenium	MET121-6104.8		ICP/MS					
Total Uranium	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Zinc	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Total Sodium	MET121-6104 & MET-121-6105	SM 3125	ICP/MS					
Mercury	INOR-121-6100 & INOR-121-6107	SM 3112 B	CV/AA					
рН	INOR-121-6001	SM 4500 H+B	PC-TITRATE					
Turbidity	INORG-121-6022	SM 2130 B	NEPHELOMETER					
True Color	INORG-121-6014	EPA 110.2	NEPHELOMETER					
Chloride	INORG-121-6005	SM 4110 B	IG					
Fluoride	INOR-121-6005	SM 4110 B	ION CHROMATOGRAPH					
Nitrate as N	INORG-121-6005	SM 4110 B	IC					
	INORG-121-6005	SM 4110 B SM 4110 B	IC					
Sulphate								
Total Dissolved Solids	INOR-121-6024, 6025	SM 2540C, D	GRAVIMETRIC					
Bromate	INOR-121-6005	SM 4110 B	IC					
Chlorine, Free	INOR-121-6037	SM 4500-CI F	TITRATION					
Chlorate	INOR-121-6005	SM 4110 B	IC					
Chlorite	INOR-121-6005	SM 4110 B	IC					
Chloramines - Total			Calculated					
Sulphide	INOR-93-6054	SM 4500 S2- D	SPECTROPHOTOMETER					
Cyanide, Free	INOR-93-6052	MOE CN-3015 & SM 4500 CN-1	TECHNICON AUTO ANALYZER					
Radionuclides - Gross Alpha Radionuclides - Gross Beta								
Nitriloacetic Acid (NTA)								
Microcystin - LR								
N-Nitrosodimethylamine (NDMA)		EPA SW846-8270	GC/MS					

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 19 of 19

APPENDIX F

Last Round of Sampling Data for *GMPDWS*

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PO Box 100 Annapolis Royal, NS B0S1A0 (902) 532-3141 **ATTENTION TO: James Jenner** PROJECT: Cornwallis Thm's, Haa's Copper, SWA AGAT WORK ORDER: 22X917864 TRACE ORGANICS REVIEWED BY: Wendy Rose, Trace Organics Lab Technician WATER ANALYSIS REVIEWED BY: Sara Knox, Data Reviewer DATE REPORTED: Jul 19, 2022 PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any Information regarding this analysis please contact your client services representative at (902) 468-8718

<u>*No</u>	otes
Dis	sclaimer:
1	All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may incorporate modifications from the specified reference methods to improve performance.
9	All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may be exempt, please contact your Client Project Manager for details.
ł.	AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
	third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the services.
	This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
Σ.	The test results reported herewith relate only to the samples as received by the laboratory.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines contained in this document. All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 15

Member of: Association of Professional Engineers and Geoscientists of Alberta (APECA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratones is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests isled on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Certificate of Analysis AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner

SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

				Ha	loacetic Acids	water)					
DATE RECEIVED: 2022-07-08 DATE REPORTED: 2022-07											
1-250			CRIPTION: PLE TYPE: SAMPLED:	Treated Cwtp Water 2022-07-05	Raw lake cady Water 2022-07-05						
Parameter	Unit	G/S	RDL	4065939	4065952						
Chloroacetic Acid	ug/L		0.5	0.7	<0.5						
Bromoacetic Acid	ug/L		0.5	<0.5	<0.5						
Dichloroacetic Acid	ug/L		0.5	16.5	<0.5						
Trichloroacetic Acid	ug/L		0.5	14.4	<0.5						
Bromochloroacetic Acid	ug/L		0.5	2.3	<0.5						
Dibromoacetic Acid	ug/L		0.5	<0.5	<0.5						
Total Haloacetic Acids	ug/L	80	4.0	33.9	<4.0						
HAA5	ug/L	80	4.0	31.6	<4.0						
Surrogate	Unit	Acceptab	le Limits								
2-Bromobutanoic acid	%	70-	130	110	118						

Comments: RDL - Reported Detection Limit; G (S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4065393-4065292 HASS is a calculated parameter is non-accredited. The component parameters of the calculation are accredited. Analysis performed at AGAT Hallfax (unless marked by *)

Certified By:

HROSE Page 2 of 16

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

Certificate of Analysis AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

SAMPLING SITE:	Of An	NAI OLIO CO	onn			SAMPLED BY:		
				Trit	nalomethanes in W	ater		
DATE RECEIVED: 2022-07-08							DATE REPORTED: 2022-07-19	
Parameter	Unit		CRIPTION: PLE TYPE; SAMPLED: RDL	Treated Cwtp Water 2022-07-05 4065939	Raw lake cady Water 2022-07-05 4065952			
Chloroform	ug/L	6/5	RDL	4065939	4005952			
Bromodichloromethane	ug/L		1	7	<1			
Dibromochloromethane	ug/L		1	<1	<1			
Bromoform	ug/L		1	<1	<1			
Total Trihalomethanes	ug/L	100	1	53	<1			
Surrogate	Unit	Acceptat	le Limits					
Toluene-d8	%	60-	140	98	98			
4-Bromofluorobenzene	%	60-	40	101	107			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. Analysis performed at AGAT Halifax (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By: Results relate only to the items tested. Results apply to samples as received. HROSE Page 3 of 16

Certificate of Analysis

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner SAMPLED BY:

DATE RECEIVED: 2022-07-08								DATE REPORTED: 2022-07-19
		SAMPLE DESC	RIPTION:	149 Topsail	406 Dingle	90 Hillside	108 Old School	
		SAMP	LE TYPE:	Water	Water	Water	Water	
		DATE S	AMPLED:	2022-07-06	2022-07-06	2022-07-06	2022-07-06	
Parameter	Unit	G/S	RDL	4065920	4065922	4065923	4065924	
Total Copper	ug/L	2000, 1000	1	4	2	17	3	

Comments: RDL - Reported Detection Limit. G / S - Guideline / Standard: Refers to Canadian Drinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 40658204-005824 - Values ere for Report Detection Limits. Analysis performed at AGAT Edmonton (unless marked by *)

Certified By:

Page 4 of 16

Sara Kmox

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

Certificate of Analysis AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner SAMPLED BY:

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

				Halifa	x - Metals - To	tal (µg/L)
DATE RECEIVED: 2022-07-0	8					DATE REPORTED: 2022-07-
Parameter	Unit		RIPTION: LE TYPE: AMPLED: RDL	Treated Cwtp Water 2022-07-05 4065939	Raw lake cady Water 2022-07-05 4065952	
Total Aluminum	ug/L	2900, 100	4	70	211	
Total Antimony	ug/L	6	2	<2	<2	
Total Arsenic	ug/L	10	2	<2	<2	
Total Barium	ug/L	2000	5	<5	<5	
Total Beryllium	ug/L		2	<2	<2	
Total Bismuth	üg/L		2	<2	<2	
Total Boron	ug/L	5000	5	6	<5	
Total Cadmium	ug/L	7	0.09	<0.09	<0.09	
Total Chromium	ug/L	50	1	<1	<1	
Total Cobait	üg/L		1	<1	<1	
Total Copper	ug/L	2000, 1000	1	<1	14	
Total Iron	ug/L	300 AO	50	650	<50	
Total Lead	ug/L	5	0.5	<0.5	0.8	
Total Manganese	ug/L	120, 20 AO	3	133	87	
Total Molybdenum	ug/L		2	<2	<2	
Total Nickel	ug/L		2	<2	<2	
Total Selenium	ug/L	50	1.0	<1.0	<1.0	
Total Silver	üg/L		0.1	<0.1	<0.1	
Total Strontium	ug/L	7000	5	10	10	
Total Thailium	ug/L		0.2	<0.2	<0.2	
Total Tin	ug/L		3	<3	<3	
Total Titanium	ug/L		3	<3	<3	
Total Uranium	ug/L	20	0.2	<0.2	<0,2	
Total Vanadium	ug/L		2	<2	<2	
Total Zinc	ug/L	5000 AO	5	83	<5	
Total Phosphorus	üg/L		50	62	239	

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Results relate only to the items tested. Results apply to samples as received.

Page 5 of 16

Sara Kmox

CBCL

Certificate of Analysis AGAT WORK ORDER: 22X917864

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:

DATE RECEIVED: 2022-07-08

PROJECT: Cornwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner SAMPLED BY:

Halifax - Metals - Total (µg/L)

DATE REPORTED: 2022-07-19

Sara Kmox

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard; Refers to Canadian Drinking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4656393-405582 - Values refer to Report Detection Limits, Analysis performed at AGAT Edmonton (unless marked by *)

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Results relate only to the items tested. Results apply to samples as received.

Page 6 of 16

CLIENT NAME: MUNICIPAI SAMPLING SITE:		1.2.2. 2.2	T	es A P		RDER: 22X917864 nwallis Thm's, Haa's Copper, SWA ATTENTION TO: James Jenner SAMPLED BY:	CANADA B38 1M2 TEL (902)488-8718 FAX (902)468-9924 http://www.egatlabs.com
				Standard	Water Analys	is + Total Metals	
DATE RECEIVED: 2022-07-08						DATE REPO	RTED: 2022-07-19
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	Treated Cwtp Water 2022-07-05 4065939	Raw lake cady Water 2022-07-05 4065952		
pH	Unit	7.0-10.5	NDL	7.96	6.41		
Reactive Silica as SiO2	mg/L		0.5	15.4	8.5		
Chloride	mg/L	250 AO	1	10	6		
Fluoride	mg/L	1.5	0.12	<0.12	0.14		
Sulphate	mg/L	500 AO	2	39	<2		
Alkalinity	mg/L		5	55	6		
True Color	TCU	15 AO	5.00	<5.00	<5.00		
Turbidity	NTU	1.0	0.5	2.3	4.2		
Electrical Conductivity	umho/cm		1	207	36		
Nitrate + Nitrite as N	mg/L		0.05	0.08	<0.05		
Nitrate as N	mg/L	10	0.05	0.08	<0.05		
Nitrite as N	mg/L	1.0	0.05	<0.05	<0.05		
Ammonia as N	mg/L		0.03	<0.03	<0.03		
Total Organic Carbon	mg/L		0.5	1.9	9.0		
Ortho-Phosphate as P	mg/L		0.01	0.12	0.012		
Total Sodium	mg/L	200 AO	1	43	4		
Total Potassium	mg/L		0.1	0.4	0.4		
Total Calcium	mg/L		0.8	1.6	1.4		
Total Magnesium	mg/L		0.8	<0.8	<0,8		
Bicarb. Alkalinity (as CaCO3)	mg/L		5	55	6		
Carb. Alkalinity (as CaCO3)	mg/L		10	<10	<10		
Hydroxide	mg/L		5	<5	<5		
Calculated TDS	mg/L	500 AO	1	128 4.0	16 3.5		
Hardness	mg/L						
Langelier Index (@20C) Langelier Index (@4C)	NA NA			-1.69 -2.01	-4.17 -4.49		
Saturation pH (@ 20C)	NA.			9.65	10.6		
Saturation pH (@ 20C) Saturation pH (@ 4C)	NA			9.60	10,8		
Anion Sum	me/L			2.20	0.29		
Cation sum	me/L			2.20	0.29		
Leaner suit	more			2.00	ULU		

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Results relate only to the items tested. Results apply to samples as received.

Page 7 of 16

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY SAMPLING SITE:				25 A	Certificate O GAT WORK ORDER ROJECT: Cornwalli	11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com	
				Standard V	Water Analysis + 1	Total Metals	
DATE RECEIVED: 2022-07-08						DATE REPORTE	D: 2022-07-19
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	Treated Cwtp Water 2022-07-05 4065939	Raw lake cady Water 2022-07-05 4065952		
% Difference/ Ion Balance	%			4.8	0.1		

Comments:

Comments: RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Canadian Dnnking Water Quality - updated 2021-03 Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation. 4065939-4065952 % Difference / Ion Bainnoa, Hardness, Langeler Index, Nitrate + Nitrite, Hydroxide and Saturation pH are calculated parameters. The calculated parameters are non-accredited. The component parameters of the calculations are accredited. Analysis performed at AGAT Halifax (unless marked by *)

Certified By:

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 8 of 16

Sara Knox

Exceedance Summary AGAT WORK ORDER: 22X917864 PROJECT: Cornwallis Thm's, Haa's Copper, SWA

11 Morris Drive, Unit 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatiabs.com

_

CLIENT NAME	MUNICIPALITY OF AN	INAPOLIS COUNTY		ATTENTION TO: Jame	es Jenner	Thus.	//www.agaliabs.co
SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
4065939	Treated Cwtp	NS-CDWQ incl [AO]	Halifax - Metals - Total (µg/L)	Total Iron	ug/L	300 AO	650
4065939	Treated Gwtp	NS-CDWQ incl [AO]	Halifax - Metals - Total (µg/L)	Total Manganese	ug/L	120, 20 AO	133
4065939	Treated Cwtp	NS-CDWQ incl [AO]	Standard Water Analysis + Total Metals	Total Iron	ug/L	300 AO	650
4065939	Treated Cwtp	NS-CDWQ incl [AO]	Standard Water Analysis + Total Metals	Total Manganese	-ug/L	120, 20 AO	133
4065939	Treated Cwtp	NS-CDWQ incl [AO]	Standard Water Analysis + Total Metals	Turbidity	NTU	1.0	2.3
4065952	Raw lake cady	NS-CDWQ incl [AO]	Standard Water Analysis + Total Metals	Turbidity	NTU	1.0	4.2
4065952	Raw lake cady	NS-CDWQ incl [AO]	Standard Water Analysis + Total Metals	рН		7.0-10.5 OG	6.41

AGAT EXCEEDANCE SUMMARY (V1)

Results relate only to the items fested. Results apply to samples as received.

Page 9 of 16

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY

PROJECT: Cornwallis Thm's, Haa's Copper, SWA

SAMPLING SITE:

AGAT WORK ORDER: 22X917864 ATTENTION TO: James Jenner SAMPLED BY:

RPT Date: Jul 19, 2022			C	UPLICAT	E	1.	REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1.0	ptable nits	Recovery	1.5	eptable mits
		Id		1.2.2	20	1	Value	Lower	Upper		Lower	Upper		Lower	Upper
Trihalomethanes in Water		S				-	1.1.1								
Chloroform	1	4059710	2	2	NA	<1	99%	50%	140%	88%	60%	130%	94%	50%	140%
Bromodichloromethane	1	4059710	< 1	< 1	NA	<1	92%	50%	140%	81%	60%	130%	89%	50%	140%
Dibromochloromethane	1	4059710	<1	<1	NA	< 1	95%	50%	140%	87%	60%	130%	73%	50%	140%
Bromoform	1	4059710	<1	< 1	NA	< 1	88%	50%	140%	80%	60%	130%	89%	50%	140%

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. Matrix spike performed on a different sample than the duplicate. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

in the balactories and	o results of the suprovide and rese	render on the rape and the rap of the	of be carounded.
Halassatia Asida (m	ator		

naioacetic Acius (water)																
Chloroacetic Acid	. 1	4065939	0.7	0.7	NA	< 0.5	99%	70%	130%	74%	60%	130%	73%	60%	130%	
Bromoacetic Acid	1	4065939	< 0.5	< 0.5	NA	< 0.5	96%	70%	130%	84%	60%	130%	92%	60%	130%	
Dichloroacetic Acid	1	4065939	16.5	16.6	0.6%	< 0.5	94%	70%	130%	105%	60%	130%	113%	60%	130%	
Trichloroacetic Acid	1	4065939	14.4	14.5	0.7%	< 0.5	87%	70%	130%	103%	60%	130%	113%	60%	130%	
Bromochloroacetic Acid	1	4065939	2.3	2.3	NA	< 0.5	82%	70%	130%	102%	60%	130%	113%	60%	130%	
Dibromoacetic Acid	1	4065939	< 0.5	< 0.5	NA	< 0.5	85%	70%	130%	120%	60%	130%	128%	60%	130%	

Comments: If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution. If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Certified By:

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific dinking water tests. Accreditation and parameter specific. A complete listing of parameters for each location is available from www.sci.ca. The tests in this report may not necessarily be included in the scope of accreditation accedited using and water. The RPD may not be reflective of dupicate values shown, due to rounding of final results. Results relate only to the Items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY

PROJECT: Cornwallis Thm's, Haa's Copper, SWA

SAMPLING SITE:

AGAT WORK ORDER: 22X917864 **ATTENTION TO: James Jenner** SAMPLED BY:

				Wate	er Ar	nalys	is								
RPT Date: Jul 19, 2022		-		UPLICAT	E		REFEREN	CE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	TRIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1.5-	ptable nits	Recovery	1.5	eptable mits
a the second of		ia.			1.4		value	Lower	Upper		Lower	Upper		Lower	Uppe
Standard Water Analysis + Tot	al Metals														
pH		4073506	7.71	7.97	3.3%	<	100%	80%	120%						
Reactive Silica as SiO2	4068611		5,9	6.4	7.1%	< 0.5	103%	80%	120%	105%	80%	120%	110%	80%	120
Chloride	4052126		11	11	2.5%	<1	109%	80%	120%	NA	80%	120%	NA	70%	130
Fluoride	4052126		<0.12	<0.12	NA	< 0.12	107%	80%	120%	NA	80%	120%	109%	70%	130
Sulphate	4052126		8	8	NA	<2	104%	80%	120%	NA	80%	120%	88%	70%	130
Alkalinity		4073506	54	53	1.9%	< 5	97%	80%	120%						
True Color	4068611		<5.00	<5.00	NA	< 5	83%	80%	120%	107%	80%	120%	NA		
Turbidity	4076312		10.0	11.6	15.3%	< 0.5	100%	80%	120%	NA			NA		
Electrical Conductivity		4073506	141	137	2.9%	< 1	103%	90%	110%						
Nitrate as N	4052126		2.43	2.46	1.4%	< 0.05	116%	80%	120%	NA	80%	120%	NA	70%	130
Nitrite as N	4052126		<0.05	<0.05	NA	< 0.05	92%	80%	120%	NA	80%	120%	113%	70%	130
Ammonia as N	4062196		< 0.03	<0.03	NA	< 0.03	100%	80%	120%	85%	80%	120%	96%	70%	130
Total Organic Carbon	4068605		2.9	2.9	1.3%	< 0.5	100%	80%	120%	NA	80%	120%	98%	80%	120
Ortho-Phosphate as P			0.02	0.02	NA	< 0.01	83%	80%	120%		80%	120%		80%	120
Total Sodium	4106494		65	66	1.9%	< 0.1	103%	80%	120%	108%	80%	120%	NA	70%	130
Total Potassium	4106494		<0.1	<0,1	NA	< 0.1	102%	80%	120%	106%	80%	120%	107%	70%	130
Total Calcium	4106494		<0.1	<0.1	NA	< 0.1	102%	80%	120%	102%	80%	120%	103%	70%	130
Total Magnesium	4106494		<0.1	<0.1	NA	< 0.1	101%	80%	120%	105%	80%	120%	105%	70%	130
Bicarb. Alkalinity (as CaCO3)		4073506	54	53	1.9%	< 5	NA	80%	120%						
Carb. Alkalinity (as CaCO3)		4073506	< 10	< 10	0.0%	< 10	NA	B0%	120%						
Hydroxide		4073506	< 5	< 5	0.0%	< 5	NA	80%	120%						

Comments: If RPD value is NA, the results of the duplicates are less than 5x the RDL and the RPD will not be calculated.

Halifax - Metals - Copper (µg/L)

Total Copper 195 4065952 14 14 2.9% <1 101% 70% 130% 105% 80% 120% 81% 70% 130% Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

Halifax - Metals - Total (µg/L)															
Total Aluminum	195	4065952	211	224	6.0%	<4	101%	70%	130%	106%	80%	120%	73%	70%	130%
Total Antimony	195	4065952	<2	<2	NA	< 2	104%	70%	130%	105%	80%	120%	83%	70%	130%
Total Arsenic	195	4065952	<2	<2	NA	<2	98%	70%	130%	108%	80%	120%	94%	70%	130%
Total Barium	195	4065952	<5	6	NA	< 5	103%	70%	130%	101%	80%	120%	87%	70%	130%
Total Beryllium	195	4065952	<2	<2	NA	<2	94%	70%	130%	97%	80%	120%	77%	70%	130%
Total Bismuth	195	4065952	<2	<2	NA	<2	104%	70%	130%	97%	80%	120%	NA	70%	130%
Total Boron	195	4065952	<5	<5	NA	< 5	.98%	70%	130%	85%	80%	120%	74%	70%	130%
Total Cadmium	195	4065952	<0.09	<0.09	NA	< 0.09	98%	70%	130%	112%	80%	120%	91%	70%	130%
Total Chromium	195	4065952	<1	<1	NA	<1	101%	70%	130%	97%	80%	120%	83%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1) Page 11 of 16 Results relate only to the items tested. Results apply to samples as received.

Quality Assurance

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY

PROJECT: Cornwallis Thm's, Haa's Copper, SWA

SAMPLING SITE:

AGAT WORK ORDER: 22X917864 ATTENTION TO: James Jenner SAMPLED BY:

		V	Vater	Ana	lysis	(Co	ntinu	ed)							
RPT Date: Jul 19, 2022		-	C	UPLICAT	E	1	REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SP	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	1.1.1.1.1.	eptable mits
	-	Id		1.2.2			Value	Lower	Upper		Lower	Upper		Lower	Upper
Total Cobalt	195	4065952	<1	<1	NA	< 1	102%	70%	130%	107%	80%	120%	83%	70%	130%
Total Copper	195	4065952	14	14	0.0%	<1	101%	70%	130%	105%	80%	120%	81%	70%	130%
Total Iron	196	4065939	650	574	12.4%	< 50	97%	70%	130%	104%	80%	120%	109%	70%	130%
Total Lead	195	4065952	0.8	1.0	NA	< 0.5	104%	70%	130%	92%	80%	120%	91%	70%	130%
Total Manganese	196	4065939	133	118	12.0%	< 3	99%	70%	130%	103%	80%	120%	109%	70%	130%
Total Molybdenum	195	4065952	<2	<2	NA	< 2	115%	70%	130%	96%	80%	120%	96%	70%	130%
Total Nickel	195	4065952	<2	<2	NA	<2	95%	70%	130%	98%	80%	120%	81%	70%	130%
Total Selenium	195	4065952	<1.0	<1.0	NA	2,0	94%	70%	130%	98%	80%	120%	105%	70%	130%
Total Silver	195	4065952	<0.1	<0.1	NA	< 0.1	102%	70%	130%	107%	80%	120%	90%	70%	130%
Total Strontium	196	4065939	10	9	NA	< 5	96%	70%	130%	97%	80%	120%	105%	70%	130%
Total Thailium	195	4065952	<0.2	<0.2	NA	< 0.1	102%	70%	130%	92%	80%	120%	90%	70%	130%
Total Tin	195	4065952	<3	<3	NA	<2	106%	70%	130%	99%	80%	120%	82%	70%	130%
Total Titanium	195	4065952	<3	9	NA	<2	120%	70%	130%	NA	80%	120%	75%	70%	130%
Total Uranium	195	4065952	<0.2	<0.2	NA	< 0.2	103%	70%	130%	94%	80%	120%	90%	70%	130%
Total Vanadium	195	4065952	<2	<2	NA	<2	95%	70%	130%	95%	80%	120%	83%	70%	130%
Total Zinc	195	4065952	<5	<5	NA	< 5	106%	70%	130%	119%	80%	120%	98%	70%	130%
Total Phosphorus	196	4065939	62	<50	NA	< 50	88%	70%	130%	95%	80%	120%	80%	70%	130%

Comments: If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. If Matrix spike value is NA, the spiked analyte concentration was lower than that of the matrix contribution.

For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Certified By:

Lara Knox

Page 12 of 16

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results. Results relate only to the items tested. Results apply to samples as received.

11 Morris Drive, Unil 122 Dartmouth, Nova Scotia CANADA B3B 1M2 TEL (902)468-8718 FAX (902)468-8924 http://www.agatlabs.com

Method Summary

CLIENT NAME: MUNICIPALITY OF	ANNAPOLIS COUNTY	AGAT WORK O	RDER: 22X917864
PROJECT: Cornwallis Thm's, Haa'	's Copper, SWA	ATTENTION TO	: James Jenner
SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			and the second sec
Chloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
Bromoacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
Dichloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
Trichloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
Bromochloroacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
Dibromoacetic Acid	ORG-120-5110	EPA 552.3	GC/ECD
2-Bromobutanoic acid	ORG-120-5110	EPA 552.3	GC/ECD
Total Haloacetic Acids	ORG-120-5110	EPA 552.3	GC/ECD
HAA5	ORG-120-5110	EPA 552.3	GC/ECD
Chloroform	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Bromodichloromethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Dibromochloromethane	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Bromoform	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Total Trihalomethanes	VOL-120-5001	EPA SW-846 5030B/8260B	GC/MS
Toluene-d8	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS
4-Bromofluorobenzene	VOL-120-5001	EPA SW846 5030B/8260B	GC/MS

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 13 of 16

Method Summary

PROJECT: Cornwallis Thm's, Haa' SAMPLING SITE:	s copper, SWA	ATTENTION TO: SAMPLED BY:	Jailles Jeillei
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis		1	
Total Copper	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
Total Aluminum	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Antimony	INOR-171-6201, INOR-171-6100	SM 3030 E; SM 3125 B	ICP-MS
Total Arsenic	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
Total Barium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP-MS
fotal Beryllium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
fotal Bismuth	INOR-171-6201	SM 3030 E; SM 3125 B	ICP/MS
otal Boron	INOR-171-6201	SM 3030 E: SM 3125 B	ICP-MS
otal Cadmium	INOR-171-6201	SM 3030 E; SM 3125 B	ICP/MS
otal Chromium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
Total Cobalt	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP-MS
fotal tron	INOR-171-6100, 171-6201	SM 3030 E; SM 3120 B	ICP/OES
otal Lead	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Manganese	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
otal Molybdenum	INOR-171-6202	SM 3030 E; SM 3125 B	ICP/MS
otal Nickel	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Selenium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Silver	INO-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Strontium	INOR-171-6201	SM 3030 E; SM 3120 B	ICP/OES
otal Thallium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Tin	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Titanium	INOR-171-6100, -6202	SM 3030 E; SM 3125 B	ICP/MS
otal Uranium	INOR-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Vanadium	INORG-171-6202	SM 3030 E: SM 3125 B	ICP-MS
		bill for a start of a start of a start of a start of a	
otal Zinc	INORG-171-6202	SM 3030 E; SM 3125 B	ICP-MS
otal Phosphorus	INOR-171-6100, 171-6201	SM 3030 E; SM 3120 B	ICP/OES
	INOR-121-6001	SM 4500 H+B	PCTITRATE
Reactive Silica as SiO2	INOR-121-6027	SM 4500-SiO2 F	COLORIMETER
Chloride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
luoride	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
Alkalinity	INOR-121-6001	SM 2320 B	(Trainwort)
Frue Color	INOR-121-6008	SM 2120 B	LACHAT FIA
Furbidity	INOR-121-6022	SM 2130 B	NEPHELOMETER
Electrical Conductivity	INOR-121-6001	SM 2510 B	PC TITRATE
vitrate + Nitrite as N	INORG-121-6005	SM 4110 B	CALCULATION
litrate as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
litrite as N	INORG-121-6005	SM 4110 B	ION CHROMATOGRAPH
mmonia as N	INOR-121-6047	SM 4500-NH3 H	COLORIMETER
otal Organic Carbon	INOR-121-6026	SM 5310 B	TOC ANALYZER
Ortho-Phosphate as P	INOR-121-6012	SM 4500-P G	COLORIMETER
fotal Sodium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Total Potassium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
fotal Calcium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 14 of 16

Method Summary

CLIENT NAME: MUNICIPALITY OF ANNAPOLIS COUNTY PROJECT: Cornwallis Thm's, Haa's Copper, SWA SAMPLING SITE: AGAT WORK ORDER: 22X917864 ATTENTION TO: James Jenner SAMPLED BY:

SAMPLING OTL.		SAMI LED DI.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Total Magnesium	MET121-6104 & MET-121-6105	modified from SM 3125/SM 3030 B/SM 3030 D	ICP-MS
Bicarb, Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Carb. Alkalinity (as CaCO3)	INORG-121-6001	SM 2320 B	PC TITRATE
Hydroxide	INORG-121-6001	SM 2320 B	PC-TITRATE
Calculated TDS	CALCULATION	SM 1030E	CALCULATION
Hardness	CALCULATION	SM 2340B	CALCULATION
Langelier Index (@20C)	CALCULATION	CALCULATION	CALCULATION
Langelier Index (@ 4C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 20C)	CALCULATION	CALCULATION	CALCULATION
Saturation pH (@ 4C)	CALCULATION	CALCULATION	GALCULATION
Anion Sum	CALCULATION	SM 1030E	CALCULATION
Cation sum	CALCULATION	SM 1030E	CALCULATION
% Difference/ Ion Balance	CALCULATION	SM 1030E	CALCULATION

AGAT METHOD SUMMARY (V1)

Results relate only to the items tested. Results apply to samples as received.

Page 15 of 16

6	GA	נ 🕇	Labora	tories webearth.	agat	lab				Dar		th. M B 1N	IS 12	Arr Arr	ival Ival	Tem	ditio pera	n: ituri	e: 2	Go	1,5	213	oor (s	1.2		3)
Chain of Custo	dy Record		P: 902.468.8718 • F: 902.468.8924							24	AGAT Job Number: 22X917864															
Report Information Company: Mun of the County of Annapolis Contact: JAMES JENNER Address: 490 SOUTH BROADWAY Comwallis, NS 902-526-0566 Phone: 902-526-0566 Client Project #: Comwallis Thm's, Haa's Copper, SWA			Report	Report Information (Please print): Report Format							at	Notes: over temp														
			1. Nam	1. Name: JAMES JENNER Single									Cooler, no ice													
			Emai	Email: Ienner@annapoliscounty.ca Sample per page 2. Name: Multiple Email: Zamples per page Regulatory Requirements (Check): Excel Z List Guidelines on Report Do nor.list Guidelines on Report						Sample per				Turnaround Time Required (TAT)												
			2. Nam							1	Regular TAT 25 to 7 working days															
			Emai							er																
			Regulat								Rush TAT Same day 122 JUL 8						8	8:48								
			Z List G																							
AGAT Quotation:		PIRI	Tier 1 Res Pot Coarse								Date Required:															
Please Nots: If quotation number is	s not provided olient will be billed for									amp	nple: 🗹 Yes 🖾 No															
nvoice To	Same	Ga	Gas Fuel Lube						Reg. No.:																	
Company; County of An	napolis		CCME						1				1									T	T	T	T	Γ
Contact: alewis@ann	apoliscounty.ca			ustrial INSESQ-Cont. Sites			C Available							F								DMF		1	2	
Address: PO Box 100				A/Park Storm Water			ENAL							ow let	tion								C. MIC	i d	1	
Annapolis R	oyal NS B0S-1a0			icultural Wasta Water	pg	Sis					D VSS			00	tional							NAMICI	OURS	ada		
Phone: 902-532-144	5 Fax:		- FW	AL diment Other	serv	Analy	D		8					BIR)	Frac	BTEX							nomobu	al C	3	
PO/Credit Card#:					ed/Pu	Nater	Total		C 800		SULD	phorus		GTB/	CLLB/	Hd1 S						V/4D			Copper	WIN
Sample Identification	Date/Time Sampled	Sample Matrix	# Containers	Comments - Site/Sample Info. Sample Containment	Field Filtered/Preserved	Standard Water Analysis	Metals: 6 Total 10 Diss	Mercury	CI BOD		I TSS I	Total Phosphorus	Phenots	Ther 1: TPH/BTEX (PIRI) [] IOW level	Tier 2: IPH/BTEX Fractionation	COME-OWS TPH/BTEX	NOC	MHI	HAA	PAH	PC8		Earl Cottom	Other. He	Other: Co	Hazardous (Y/N)
								-			+	-		-	-	-	-	-		-	-	-	+	F	F	F
						-		-	-	-			-	-				-	-		-	-	-	+	-	-
149 Topsall	July 6	Тар	1		-	_													-						1	
406 Dingle 90 Hill side	July 6 July 6	Tap Tap	1		_	-	-	-	-	-	-		-				-		-	_	-	-	-	1	1	1
108 Old school	July 6	Тар	1		-	-	-	-	-	+	+	+	+	-	-	-	-	-	+	-	-	-	-	+	1	-
Treated Cwtp	July 5	Тар	9			-	-	+	+	+	+	+	+	-	-	-	-	1	1	-	-	+	+	+	1	-
Raw lake cady	July 5	Lake	9			1													1			1		T		-
		-			_	-	-	-	-	-	-	1				_	-	-	-			1		-	_	
	3	Dete/T	ly 6	Semples Received By (Pont Neme)	_		_		1	1	Data/	1778			F	Pink C	opy -	Clier	nt		Pag		1	of	-	
for The Service Strategy I and Service State			Ina	Dampine President Dy (dign) DeleyTime							Yellow Copy - AGA White Copy- AGAT				T											
				400	_		-	-			-		-	-	-	-	-	-	1	-	-	-	-	id=(int	-	-

CBCL

APPENDIX G

Approval to Operate

55 Starrs Rd. Unit 9 Yarmouth NS Canada B5A 2T2 902-742-8985 Р 902-742-7796 F www.novascotia.ca

APPROVAL

Province of Nova Scotia Environment Act, S.N.S. 1994-95, c.1 s.1

APPROVAL HOLDER: MUNICIPALITY OF THE COUNTY OF ANNAPOLIS

SITE PID:	05213756							
APPROVAL NO:	2009-065804-02							

EXPIRY DATE: June 1, 2029

Pursuant to Part V of the *Environment Act*, S.N.S. 1994-95, c.1 s.1 as amended from time to time, approval is granted to the Approval Holder subject to the Terms and Conditions attached to and forming part of this Approval, for the following activity:

Municipal - Water Works - Water Treatment Facility

Paddy joe Mac Millan

Administrator: Paddy-joe MacMillan

Effective Date: June 1, 2019

The Minister's powers and responsibilities under the Act with respect to this Approval have been delegated to the Administrator named above. Therefore, any information or notifications required to be provided to the Minister under this Approval can be provided to the Administrator unless otherwise advised in writing.

Page 1 of 25

TERMS AND CONDITIONS OF APPROVAL

Nova Scotia Environment

Approval Holder: MUNICIPALITY OF THE COUNTY OF ANNAPOLIS

Project: Cornwallis Park WTP at Cady Lake

Site:

PID	Civic #	Street Name	Street Type	Community	County
05213756	490	SOUTH BROADWAY	AVE.	CORNWALLIS P	ARK ANNAPOLIS COUNTY

Approval No:	2009-065804-02
File No:	94600-30-YAR-2009-065804

Reference Documents

- Application submitted March 8, 2018 and attachments.

1. Definitions

- a. Act means Environment Act. 1994-95, c.1, s.1, and includes, unless the context otherwise requires, the regulations made pursuant to the Act, as amended from time to time.
- b. Administrator means a person appointed by the Minister for the purpose of the Act, and includes an acting administrator.
- c. CT means disinfectant residual in mg/l multiplied by the contact time in minutes.
- d. Contact Time denoted as T10 is an effective contact time for disinfection in minutes and represents the time when 10% of the water passes the contact unit; that is 90% of the water remains in the unit and will be exposed to longer disinfection within the unit. T10 can be established by tracer studies or calculated using theoretical hydraulic detention times multiplied by an appropriate baffling factor listed in the "Nova Scotia Treatment Standards for Municipal Drinking Water Systems" as amended from time to time.
- e. Continuous monitoring is sampling of flow through analysis equipment that creates an output signal a minimum of once every five minutes.

Page 2 of 25

f. Department means the Department of Environment, and the contact for the Department for this approval is:

Nova Scotia Environment Western Region, Yarmouth Office 55 Starrs Road, Unit 9 Yarmouth, NS, B5A 2T2

Phone: 902-742-8985 Fax: 902-742-7796

- g. Grab sample means an individual sample collected in less than 30 minutes and which is representative of the substance sampled.
- h. Inadequate Primary Disinfection means water that does meet the required CT/IT.
- i. Inadequate Secondary Disinfection means water that does not meet the required disinfectant residual in the distribution system.
- j. Log reduction means a negative of the base 10 logarithm of the fraction of pathogens remaining after the treatment process.

log reduction = log removal by physical treatment + log inactivation by disinfection

where log removal by physical treatment is equal to the credit assigned to the filtration technology indicated in the Department's "Nova Scotia Treatment Standards for Municipal Drinking Water Systems", as amended from time to time; and

log inactivation by disinfection is equal to the inactivation which shall be calculated as defined by the Department's "Nova Scotia Treatment Standards for Municipal Drinking Water Systems", as amended from time to time.

- k. Minister means the Minister of Environment and includes any person delegated the authority of the Minister.
- I. QA/QC means quality assurance and quality control.
- m. Quarterly sampling means samples taken once per quarter with no less than a 45 day interval between sampling events.
- n. Site means a place where a designated activity and/or undertaking is occurring or may occur.

2. Scope

a. This Approval (the "Approval") relates to the Approval Holder(s) and their

Page 3 of 25

application and all documentation submitted to the Department prior to the issuance of this approval for the Municipal Water Treatment Facility situated at or near Cornwallis, NS (the "Site").

b. This Approval supersedes previous Approval number 2009-065804-R01 which is now null and void.

3. General

- a. The Approval Holder(s) shall conduct the Designated Activity in accordance with the following provisions:
 - i. The Act, as amended from time to time;
 - ii. Any standard adopted by the Department, as amended from time to time, which includes but is not limited to the following:
 - The Atlantic Canada Guidelines for the Supply, Treatment, Storage, Distribution and Operation of Drinking Water Supply Systems (2004), as amended from time to time;
 - (b) By January 1, 2020, the Nova Scotia Treatment Standards for Municipal Drinking Water Systems (2012), as amended from time to time;
 - the Guidelines for Monitoring Public Drinking Water Supplies, as amended from time to time;
 - (d) Health Canada's Guidelines for Canadian Drinking Water Quality, as amended from time to time;
 - (e) Facility Classification Standards (2009), as amended from time to time.
- b. Nothing in this Approval relieves the Approval Holder(s) of the responsibility for obtaining and paying for all licenses, permits, approvals or authorizations necessary for carrying out the work authorized to be performed by this Approval which may be required by municipal by-laws or provincial or federal legislation. The Minister does not warrant that such licenses, permits, approvals or other authorizations will be issued.
- c. If there is a discrepancy between the reference documents and the terms and conditions of this Approval, the terms and conditions of this Approval shall apply.
- d. Any request for renewal or extension of this Approval is to be made in writing, to the Department, at least ninety (90) days prior to the Approval expiry.
- e. If the Minister cancels or suspends this Approval, the Approval Holder(s) remains subject to the penalty provisions of the Act.

Page 4 of 25

- f. The Approval Holder(s) shall advise the Department in writing prior to any proposed extensions or modifications to the Site. An amendment to this Approval may be required before implementing any extension or modification.
- g. The Approval Holder(s) shall immediately notify the Department of any incidents of non-compliance with this Approval.
- The Approval Holder(s) shall bear all expenses incurred in carrying out the environmental monitoring required under the terms and conditions of this Approval.
- i. All sampling and analysis must be performed in accordance with the following as amended from time to time: Standard Methods for the Examination of Water and Wastewater, or the analytical methods section of Health Canada's guideline technical document for the parameter of concern. All samples shall be collected by persons trained in appropriate sample collection procedures.
- j. Unless written authorization is received otherwise from the Minister, all samples required by this Approval shall be analyzed by a laboratory that meets the requirements of the Department's "Policy on Acceptable Certification of Laboratories" as amended from time to time.
- k. Notwithstanding the above item, the following parameters may be analyzed at the Site or a laboratory that is not certified.

Alkalinity*, Aluminium Residual*, Chloramines, Chlorine Dioxide Residual, Chlorine Residual, Colour, Conductivity*, Fluoride Residual*, Hardness*, Iron*, Manganese*, Methane*, Free Ammonia (as N)*, Ozone Residual, pH, Temperature, Total Organic Carbon, Turbidity and UV Absorbance.

* These parameters must have a Quality Assurance/Quality Control component that includes quarterly confirmation by an accredited laboratory.

- I. The Approval Holder(s) shall ensure that this Approval, or a copy, is kept on Site at all times and that personnel directly involved in the designated activity are made fully aware of the terms and conditions which pertain to this Approval.
- m. Upon any changes to the Registry of Joint Stock Companies information, the Approval Holder(s) shall provide a copy to the Department within five business days.

4. Releases

- a. Releases shall be reported in accordance with the Act.
- b. Releases shall be cleaned up in accordance with the Act.

Page 5 of 25

5. Residuals Management

- a. All residuals generated at the Site shall be managed in accordance with a Residuals Management Plan deemed acceptable by the Department.
- b. Changes to the Residuals Management Plan must be submitted in writing for review and be deemed acceptable by the Department prior to implementation.
 - i. type of residual;
 - ii. processing method;
 - iii. expected annual volume of residuals to be generated by the activity.
- c. The Approval Holder(s) shall record the following information each time residuals are removed from the facility and make the records available to the Department immediately upon request:
 - i. the type of residual;
 - ii. the volume of each residual transported, expressed as cubic metres or kilograms;
 - iii. hauler, if applicable;
 - iv. date of transport;
 - v. final destination of residuals.

6. Operation

- a. The Municipal Public Drinking Water Supply has been classified as a Class III water treatment facility and a Class II water distribution facility.
- b. When it is necessary to use a by-pass to divert water around one or more unit processes, the Approval Holder(s) shall immediately notify the Department and identify the anticipated period of time that the by-pass will be in service.
- c. When it is necessary to use a by-pass to divert water around one or more unit processes, the Approval Holder(s) shall immediately initiate a Boil Water Advisory. The Approval Holder(s) shall maintain the boil advisory until otherwise advised by the Department.
- d. The Approval Holder(s) shall ensure the development and implementation of a cross-connection control program to protect the Municipal Public Drinking Water Supply from contamination due to cross-connections from commercial, institutional, industrial, multi-unit residential, and agricultural facilities, at a minimum, and avoid any cross-connections within the drinking water treatment facility. The program shall be submitted to the Department for review on or before

Page 6 of 25

June 1, 2020. Upon review, the Department may require changes to the crossconnection control program.

- e. The Approval Holder(s) shall demonstrate that any water supply system component in contact with treated water has been disinfected after construction, repair or maintenance in accordance with ANSI(American National Standards Institute)/AWWA (American Water Works Association) C651 Disinfection of Water Mains, ANSI/AWWA-C653 Disinfection of Water Treatment Plant, and ANSI/AWWA C652 Disinfection of Water Storage Facilities or the latest revisions.
- f. The Approval Holder(s) shall ensure that all chemicals used in the treatment process and all materials contacting the water are of "food grade" quality and meet both the AWWA quality criteria as set out in AWWA standards and the ANSI safety criteria as set out in ANSI standard NSF/60 (for chemical additives) or NSF/61 (for materials). A copy of the appropriate NSF certification is to be kept on Site and is to be available for review immediately upon request by the Department.
- g. The Approval Holder(s) shall discontinue use of any chemical found to have adverse effects on finished water quality limits as prescribed in this Approval.
- h. Emergency Notification Procedures:
 - i. The Approval Holder(s) shall ensure that the emergency notification procedures are reviewed and updated on a yearly basis. The Approval Holder(s) shall document in the annual report what modifications were made to the emergency notification procedures and how the procedures were communicated to their staff.
 - ii. A copy of the emergency notification procedures are to be maintained on Site at all times and are to be available for review immediately upon request by the Department.
 - iii. All employees shall be apprised of the emergency notification procedures.
- i. Operations Manual:
 - i. A copy of the operations manual is to be kept on Site at all times and is to be available for review immediately upon request by the Department.
 - ii. The Approval Holder(s) shall ensure that all employees are trained in accordance with the operations manual and shall keep a record of training at the facility for a minimum period of five (5) years.
- j. A set of drawings, incorporating any amendments made from time to time, shall be retained on Site by the Approval Holder(s) for as long as the Municipal Public Drinking Water Supply is kept in operation and are to be available for inspection

Page 7 of 25

or review by departmental staff immediately upon request.

- k. The Approval Holder(s) shall establish procedures for receiving and responding to complaints including a reporting system that records and documents what steps were taken to determine the cause of complaint and the corrective measures taken to alleviate the cause and prevent its recurrence.
- I. The Approval Holder(s) shall establish security measures to assure the safety of the Municipal Public Drinking Water Supply.
- m. The Approval Holder(s) shall maintain a written list of the name of each laboratory utilized, and the parameters analyzed by each laboratory, and shall submit this list to the Department immediately upon request.

7. System Assessment Report

- a. The Approval Holder(s) shall submit a "System Assessment Report" to the Department by April 1, 2023, to verify that the Municipal Public Drinking Water Supply complies with the Act and standards.
- The System Assessment Report shall be in accordance with the Department's "Terms of Reference for System Assessment Reports for Water Works" as amended from time to time.
- c. The Approval Holder(s) shall provide the Department with their corrective action plan to address deficiencies identified by the "System Assessment Report" by October 1, 2023. Any changes to the corrective action plan shall be submitted to and deemed acceptable by the Department.

8. Source Water Protection

- a. The Approval Holder(s) shall implement the accepted Source Water Protection Plan in accordance with the accepted schedule.
- b. The Approval Holder(s) shall ensure that the Source Water Protection Plan is reviewed and updated on a yearly basis. The Approval Holder(s) shall ensure that any changes are documented in the annual report.
- c. The Approval Holder(s) shall modify the Source Water Protection Plan including updates, if so directed by the Department.

9. Water Quality Requirements - Performance and Limits

General Requirements

- a. Utilizing both the engineered filtration and disinfection processes, the treatment facility shall meet the following treatment efficiencies:
 - i. Treatment shall be sufficient to ensure 3-log reduction (99.9%) of Giardia

Page 8 of 25

and Cryptosporidium, and

- ii. Treatment shall be sufficient to ensure 4 log reduction (99.99%) of viruses.
- b. Primary disinfection though the use of UV, chlorine, and/or Department approved alternate disinfectant shall address a minimum of 0.5-log inactivation for Giardia when used in conjunction with filtration. The disinfection log inactivation shall be based on CT/IT values as described in "Nova Scotia Treatment Standards for Municipal Drinking Water Systems". CT values shall be calculated as defined by the Department's "Nova Scotia Treatment Standards for Municipal Drinking Water Systems". A minimum UV dose (IT) of 40mJ/cm2 is required.
- c. The treated water shall be minimize corrosion of the water distribution and/or plumbing systems.

Primary Disinfection Requirements

- d. The facility shall have a minimum of two primary disinfection units to ensure that inadequately disinfected water is not distributed. Each disinfection unit shall be capable of meeting the maximum day demand flow. Where more than two disinfection units are provided, the maximum day demand flow shall be met when the largest unit is out of service.
- e. Continuous on-line monitoring of the primary disinfection process is required at each treatment facility with measurements taken at a minimum of once every five minutes to ensure that inadequately disinfected water does not enter the distribution system. Water systems shall be equipped with alarm capabilities to notify operations staff if the disinfection process fails to operate properly to prevent inadequately disinfected water from being distributed.
- f. In the event of an emergency situation where water enters the water distribution system that does not meet the water quality limits as prescribed in this Approval, the Approval Holder(s) shall issue a boil water advisory, do-not-consume, or donot-use advisory as described in the Guidelines for Monitoring Public Drinking Water Supplies and immediately notify the Department.
- g. Standard operational procedures (SOPs) for the disinfection process shall be developed, implemented and communicated to all operations staff and documented in the operations manual required herein. The procedures and a log indicating the date and method of communication to staff shall be made available to the Department immediately upon request.
 - The standard operational procedures shall indicate the design ranges for achieving CT (e.g. minimum temperature and chlorine residual; maximum flow and pH) and/or IT (e.g. min UV intensity, min UV transmittance, and max water flow).
 - ii. When operational conditions are outside the design ranges for achieving Page 9 of 25

CT/IT, the Approval Holder shall notify the Department as soon as the Approval Holder becomes aware, investigate the cause and take necessary corrective action. CT/IT shall be calculated during every such event.

Filtration Requirements

General Requirements:

- h. A minimum of two filters (redundancy) is required. Where two filters or membrane units are provided, each shall be capable of supplying maximum daily demands with the largest filter out of service. Where more than two filters or membrane units are provided, the maximum day demand shall be met with the largest filter out of service.
- i. Filters shall be capable of directing filtered water to waste immediately following a backwash for a period of time until the filtrate turbidity value is below 0.2 NTU.

Individual Filter Turbidity Values:

- j. For chemically-assisted filtration, turbidity levels from the combined or individual filter effluent:
 - i. shall be less than or equal to 0.2 NTU in at least 95% of the measurements made, or at least 95% of the time each calendar month;
 - ii. shall not exceed 1.0 NTU at any time.
- k. The filtration process shall be operated in such a manner as to remove an individual filter from service if the turbidity exceeds the values specified herein.
- I. Filtration processes for pathogen reduction are required to be continuously monitored, with measurements taken at a minimum frequency of once every five minutes. Filtration processes shall have a shut off feature and alarm when turbidity criteria are not achieved. The Approval Holder shall notify the Department as soon as they become aware of turbidity values that do not meet the requirements of this Approval.
- m. Standard operational procedures for the filtration process shall be developed, implemented and communicated to all operations staff and documented in the operations manual required herein. The procedures shall be made available to the Department immediately upon request.

Distribution Turbidity Values:

- n. A turbidity value of 5.0 NTU or less shall be achieved on water distribution system sampling.
- o. Unless specified otherwise in this approval, sampling and testing frequency is the same as for bacteriological sampling requirements as stated in the "Guidelines"

Page 10 of 25

for Monitoring Public Drinking Water Supplies".

p. Where turbidity values of greater than 5.0 NTU are observed in the water distribution system, the Approval Holder(s) shall investigate the cause and take corrective action as necessary and notify the Department immediately.

Turbidity Monitoring Requirement:

- q. Continuous monitoring, with measurements taken at no more than five minute intervals, is required for individual filter effluent.
- r. Continuous or grab sample monitoring at least once a day is required for raw water prior to pre-treatment.
- s. Continuous or grab sample monitoring of the water distribution system is required. Unless specified otherwise in this approval, sampling and testing frequency is the same as for bacteriological sampling requirements as stated in the "Guidelines for Monitoring Public Drinking Water Supplies".
- t. Continuous or grab sample monitoring of the filter-to-waste product is required. Unless specified otherwise in this Approval, sampling and testing shall be completed prior to returning the filter to operation.

Secondary Disinfection and Residual Monitoring Requirements

- u. Secondary disinfection through the use of Free Chlorine shall be used to maintain a chlorine residual in the water distribution system.
- v. The disinfection process shall be operated in such a manner as to ensure that the following minimum chlorine residual value is achieved throughout the water distribution system at all times:
 - i. 0.20 mg/L free chlorine residual.
- w. The disinfection process shall be operated in such a manner as to ensure that the maximum chlorine residual delivered to consumers does not exceed the following value:
 - i. 4.0 mg/L free chlorine residual.
- x. Continuous monitoring of the chlorine residual is required for the water leaving any water storage structure within the water distribution system, with measurements taken at no more than five minute intervals.
- y. Monitoring of the water distribution system for chlorine residual is required. Unless specified otherwise in this Approval, sampling and testing frequency is the same as for bacteriological sampling requirements as stated in the "Guidelines for Monitoring Public Drinking Water Supplies".

Page 11 of 25

Aluminum Residual Values:

z. Based upon a running annual average of monthly samples, reduce residual aluminum levels to the lowest extent possible with a maximum operational value of 0.1 mg/L for conventional treatment or 0.2 mg/L when utilizing other treatment types.

10. Backup Water Systems

- a. Prior to the use of a backup water system, the Approval Holder(s)shall immediately notify the Department and identify the anticipated period of time that the backup system will be in service.
- b. For backup systems that do not meet the Nova Scotia Treatment Standards for Municipal Drinking Water Systems, the Approval Holder(s) shall immediately initiate a Boil Water Advisory as stated in the "Guidelines for Monitoring Public Drinking Water Supplies" prior to the use of the backup system. The Approval Holder(s) shall maintain the boil advisory until otherwise advised by the Department.
- c. For backup systems that meet the Nova Scotia Treatment Standards for Municipal Drinking Water Systems, the backup water system may continue to operate until the main water system is put back into service or as otherwise directed by the Department.

11. Laboratory Reports and Water Quality Results

- a. The Approval Holder shall submit copies of the laboratory certificate of analysis to the Department immediately upon request.
- b. The Approval Holder(s) will authorize and work with laboratories to electronically report water quality results to the Department upon implementation of an on-line drinking water quality surveillance program.
- c. Electronic reporting shall not replace the Approval Holder(s)'s responsibility to notify the Department immediately, by telephone, of the presence of bacteria or an exceedance of a maximum acceptable concentration for a health-related parameter listed in the "Guidelines for Canadian Drinking Water Quality".

12. Treatment Backwash - Performance and Limits

- a. Backwash water from the treatment process shall be discharged to a location deemed acceptable by the Department.
- b. Backwash water discharged from the treatment process shall go to a municipal wastewater collection system.

13. Monitoring and Recording

Page 12 of 25

- a. The Approval Holder(s) shall monitor and sample the municipal public drinking water supply system in accordance with a monitoring program deemed acceptable by the Department and which meets the minimum requirements of Schedule A, attached. In the case of a discrepancy between Schedule A and the accepted monitoring program, the accepted monitoring program shall apply.
- b. All required monitoring data must be collected and submitted in the units of measure indicated in the standard(s).
- c. Sampling shall be representative of the water distribution system.
- d. On or before October 1 of each year, the Approval Holder(s) shall recommend to the Department the monitoring program for the municipal public drinking water supply for the following calendar year, highlighting any proposed changes and the reason for the changes. Any existing monitoring program shall remain in place until the recommended monitoring program is deemed acceptable by the Department.
- e. The monitoring program shall meet the minimum requirements of the Department's "A Guide to Assist Nova Scotia Municipal Water Works Prepare Annual Sampling Plans", as amended from time to time.
- f. The monitoring program shall be acceptable to the Department.
- g. The Approval Holder(s) is responsible for implementing, on an annual basis, the monitoring program and subsequent revisions as deemed acceptable by the Department.
- h. The Approval Holder(s) shall not move, relocate or otherwise alter the location of the sampling locations indicated in the approved monitoring program without written permission from the Department.
- i. Following a review of any of the analytical results required by this Approval, the Department may alter the frequencies, location, and parameters for analyses required for this Approval or require other remedial action.
- j. Any flow measuring devices and continuous water quality analysers and indicators with alarm systems shall be installed, maintained and calibrated as specified by the instrument manufacturer's instructions. Calibration logs for each instrument shall be maintained at the site and be available for inspection immediately upon request by the Department.
- k. The Approval Holder(s) shall establish a QA/QC program to validate the measurements obtained from continuous monitoring equipment and for all analysis conducted at the Site or a non-certified laboratory.
- I. The Approval Holder(s) shall establish and conduct process control testing and sampling and record the results. Results are to be made available for inspection

Page 13 of 25

or review by departmental staff immediately upon request.

m. The Approval Holder(s) shall establish and conduct source water protection testing and sampling and record the results. Results are to be made available for inspection or review by departmental staff immediately upon request.

14. Reporting

Reporting Upon Request

a. The Approval Holder(s) shall keep records continually updated in such a way, that weekly and/or monthly reporting of monitoring and sampling results can be immediately sent to the Department upon request.

Annual Reporting

- b. The Approval Holder(s) shall prepare and submit to the Department, an annual report for the municipal public drinking water supply.
- c. The annual report shall be submitted on or before April 1 following the completion of the calendar year being reported upon.
- d. The annual report shall contain, but not be limited to, the following information:
 - i. a summary and discussion of the quantity of water supplied during the reporting period on a per month basis showing design values, maximum daily flow and average daily flow for each month and any other parameters or conditions specified in the Water Withdrawal Approval.
 - a summary and interpretation of analytical results obtained in accordance with the monitoring and recording section of this Approval, including an explanation for any exceedance of the maximum acceptable concentration (MAC) of health-related parameters listed in the "Guidelines for Canadian Drinking Water Quality", latest edition and the actions taken to address the exceedance;
 - a summary and interpretation of analytical results obtained in accordance with the corrosion assessment/control monitoring program including but not limited to residential lead sampling results;
 - iv. annual trend graphs for parameters that are continuously monitored;
 - v. date and description of any emergency or upset conditions which occurred during the period being reported upon and action taken to correct them;
 - vi. any modifications to the contingency plan or emergency notification procedures including a description of how the information was communicated to staff;

Page 14 of 25

- vii. a list of the names of each laboratory utilized by the Approval Holder(s) and the parameters analyzed by each laboratory;
- viii. an update on the status of the source water protection plan, including any modifications to the plan or implementation schedule, and a summary of activities taken to achieve the goals and objectives of the plan;
- ix. all incidents of free chlorine residual below 0.20 mg/L in the water distribution system shall be detailed with a description of any actions taken;
- mathematical verification that the operational conditions remained within the design range for achieving CT/IT; if operational conditions went outside the design ranges, provide CT/IT calculations and a summary of corrective actions taken;
- xi. mathematical verification that the individual filter turbidity values are less than or equal to 0.2 NTU in at least 95% of the measurements made, or at least 95% of the time each calendar month;
- xii. incidents of non-compliance with this Approval, the date it was reported to the Department, and corrective actions taken by the Approval Holder(s);
- xiii. any complaints received and the steps taken to determine the cause of the complaint and the corrective measures taken to alleviate the cause and prevent its recurrence;
- xiv. a review of the QA/QC program to validate the measurements obtained from continuous monitoring equipment and for all analysis conducted at the facility or a non-certified laboratory;
- xv. a list of each certified operator and their level of certification.

Emergency Reporting on Operation

- e. The Approval Holder(s) shall notify the Department immediately of an incident that may adversely affect the quality of the water within the municipal public drinking water supply. Notification shall be made to a live person by phone or in person and followed by fax or email. These incidents shall include but not be limited to: the presence of bacteria; inadequately disinfected water being directed to the water distribution system; sewage or other releases in the source municipal public drinking water supply area; line breakage that may result in cross contamination; exceedance of turbidity values required by this approval; if using membrane filtration, failure of direct integrity test, etc.
- f. The Approval Holder(s) shall notify the Department immediately of any analytical results that exceed the maximum acceptable concentration (MAC) of health-related parameters listed in the "Guidelines for Canadian Drinking Water Quality", latest edition. Notification shall be made to a live person by phone or in person

Page 15 of 25

and followed by fax or email.

- g. When bacteria are detected at the municipal public drinking water supply, the Approval Holder(s) shall notify the Department immediately of the presence of bacteria and take corrective action as outlined in the latest edition of the "Guidelines for Monitoring Public Drinking Water Supplies" as amended from time to time. Notification shall be made to a live person by phone or in person and followed by fax or email.
- If the chlorine residual in the water distribution system is less than 0.20 mg/L free chlorine, the Approval Holder(s) shall notify the Department immediately of the low chlorine residual and take corrective action to obtain the required residual. Notification shall be made to a live person by phone or in person and followed by fax or email.

15. Contingency Plan

- a. The contingency plan is to meet the minimum requirements of the Department's "A Guide to Assist Nova Scotia Municipal Water Works Develop a Comprehensive Operations Manual" and "Contingency Planning Guidelines" as amended from time to time.
- b. The Approval Holder(s) shall ensure that the contingency plan for the Municipal Public Drinking Water Supply is reviewed and updated on a yearly basis. The Approval Holder(s) shall document in the annual report what modifications were made to the plan and how the plan was communicated to their staff.
- c. The Approval Holder(s) shall ensure that all employees are trained in accordance with the contingency plan and shall keep a record of training at the facility for a minimum period of five (5) years.
- d. A copy of the contingency plan is to be maintained on Site at all times and is to be available for review immediately upon request by the department.

16. Records

- a. The Approval Holder(s) shall keep the following records and water quality analyses:
 - All incidents of suspected and/or confirmed disease outbreaks attributed to the water system shall be documented and kept for a minimum of ten years.
 - ii. Bacteriological, chlorine residual and turbidity analyses shall be kept for two years.
 - iii. Chemical analysis shall be kept for 10 years.
 - iv. Annual water withdrawal records shall be kept for 10 years.

Page 16 of 25

- b. The Approval Holder(s) shall retain the following information for a period of five (5) years:
 - i. Calibration and maintenance records.
 - ii. Continuous monitoring data.
- c. A copy of project reports, construction documents and drawings, inspection reports, shall be kept for the life of the Water Supply System.

Page 17 of 25

	Schedule A	
	Surface Water	
Water Quality Parameters	Sample Location	Minimum Frequency
Turbidity Turbidity	Raw water	Continuous at no more than 5 minute intervals or daily grab
	Individual filter effluent	Continuous at no more than 5 minute intervals
	Filtered water directed to waste	Continuous at no more than 5 minute intervals or grab sample during filter- to-waste
	Distribution system sample points	Weekly grab sample
Primary Disinfection (Param	eters to be monitored depend	on the disinfection method
Free Chlorine		
Fee Chlorine Residual	CT control point (water entering distribution system)	Continuous at no more than 5 minute intervals – must meet CT design criteria
Temperature	CT control point	Continuous at no more than 5 minute intervals or daily grab – must meet CT design criteria
рН	CT control point	Continuous at no more than 5 minute intervals - must meet CT design criteria
method used)	ameters to be monitored depe	end on the disinfection
Free Chlorine		
Free Chlorine Residual	Storage structure outlet	Continuous at no more than 5 minute intervals
	Distribution system sample points	Weekly grab sample
Microbial Quality		
Total Coliforms and <i>E. coli</i> (present/absent)	Water entering the distribution system	Weekly grab sample
	Distribution system sample points	Weekly grab sample

	Scheo	dule A Water	
Water Quality Parameters	Sample		Minimum Frequency
Viruses	Raw water	Loganon	As requested by the Department
	Water distribution system		As requested by the Department
Giardia and Cryptosporidium	Raw water		As requested by the Department
	Water distribu	tion system	As requested by the Department
Cyanobacteria	Raw water		Visual monitoring at least weekly for evidence of bloom formation from May to October.
Cyanobacterial toxins - Total Microcystins	Raw water		During a bloom Minimum of every 5 years as part of full health- related parameter suite (during warmest month)
	Treated water		During a bloom Minimum of every 5 years as part of full health- related parameter suite (during warmest month)
Corrosion Monitoring Progra	am		1
 pH Alkalinity Conductivity Temperature Dissolved oxygen Chlorine or chloramine residual 	Point of entry and representative locations within the distribution system based on population served:		Quarterly grab sample for two consecutive years* * An owner may submit a request to NSE for a reduction in the frequency
 Corrosion inhibitor residual (if used) 	Population	# of distribution samples	of point-of-entry and distribution monitoring requirements from
These parameters will assist the	<100	1	quarterly to annually
utility determine the corrosivity	101-500	2	between May and October
of the water and type of	501-3,300	3	if the water is not corrosive
corrosion control the system should install, if needed.	3,301- 10,000	4	as evidenced by point of entry and distribution
	10,001- 100,000	6	sample results for key parameters in conjunction with residential lead levels
	>100,000	10	

Schedule A			
Water Quality Parameters	Surface Water Sample Location	Minimum Frequency	
Lead – flushed sample(s)	Representative locations	lead concentrations are below the lead action level for a period of two consecutive years). *If the water is corrosive as evidenced by point-of-entry and distribution sample results for key parameters in conjunction with residential lead levels (e.g. the 90 th percentile lead concentrations are above the lead action level in any given year), the utility shall implement a corrosion control program or optimize their existing program. The utility shall submit a corrosion control program to NSE for review and acceptance. Once accepted by NSE, the utility shall follow the corrosion control monitoring parameters, location(s) and frequency included in their program.	
	within the distribution system based on population served – see table above.	 * An owner may submit a request to NSE to stop collecting flushed samples for lead from the distribution system, if samples collected from the distribution system during the warmest month for a period of two consecutive years show the utility does not have lead present in fittings or other components in the distribution system. 	

	Schedule A			
Water Quality Parameters	Surface Water Sample Locatio		N.Al-	imum Frequency
 Water Guany Parameters Lead – Stagnated Sampling (as per Health Canada's Guidance for Controlling Corrosion in Drinking Water Distribution Systems, as amended from time to time) Tier 1 Sampling Minimum 6-hour stagnation period Collect first draw 1 litre sample. May collect 4 1-litre samples in case Tier 2 sampling is required. 	Where possible, sites shall be selected to include: 1/ at least 50% of sites with lead service lines (where present); 2/ locations that contain copper pipes with lead solders or lead pipes; and 3/ locations with lead containing brass fittings.		Annually between May to October to assess corrosivity of water to lead release. If < 10% (defined as 90 th percentile) of initial sample results are above the lead action limit for a period of two consecutive years, submit request to NSE to sample once per year (reduced annual). If > 10% (defined as 90 th percentile) of initial sample results are above the lead action limit, proceed to Tie 2 sampling.	
	Number of monitoring served as shown in t Population	he follo # c (R		
	<100		5	5
	101-500	1	10	5
	501-3,300		20	10
	3,301- 10,000		40	20
	10,001- 100,000		60	30
	>100, 000	1	100	50
	*An owner may subm in the number of resi percentile lead conce	nit a rec dential entratio	uest to samples	NSE for a reduction is if the 90th elow the lead action
and the state	level for a period of t			
 Tier 2 Sampling Minimum 6-hour stagnation period Collect first draw 4* x 1 	Sample at 10% of sites sampled in Tier 1 (sites with the highest lead of Tier 1 samples exc		d as 90 th percentil 1 samples exceed	

	Schedule A	
	Surface Water	
Water Quality Parameters	Sample Location	Minimum Frequency
litre samples (or additional 3 x 1 litre samples from Tier 1) * More than 4 samples may be required to identify the source of lead, depending on several factors including the length and diameter of piping, etc.	systems serving 500 or fewer people a minimum of two sites are required. Each 1 liter sample is analyzed to obtain a profile of lead contribution from the: -Faucet -Plumbing (leaded solder, brass and bronze fittings, brass water meter, etc.) -Lead service line	
Process Control		
Water Volume	Raw water entering facility	Continuous at no more than 5 minute intervals - must meet CT design criteria
Aluminum – for facilities that add aluminum- based coagulants	Water entering the distribution system	Monthly
	Select distribution system sample point(s)	Monthly
Disinfection By-products	1	
Total Trihalomethanes (THMs)	Select distribution system sample point(s) – representative of highest level. Areas in the distribution system with the longest disinfectant retention time.	Quarterly - locational running annual average (Iraa) based on a minimum of 4 quarterly samples.
Haloacetic Acids (HAAs)	Select distribution system sample point(s) – where historical data show the highest concentration. Where historical data is not available concentrations shall be monitored in the middle and extremities of the distribution system.	Quarterly - locational running annual average (Iraa) based on a minimum of 4 quarterly samples.
Chlorate – if storing sodium hypochlorite	Water entering distribution system	Quarterly

	Schedule A	
	Surface Water	
Water Quality Parameters	Sample Location	Minimum Frequency
more than 3 months		
Bromate – if storing sodium hypochlorite more than 3 months	Water entering distribution system	Quarterly
Treatment Process -Backwas Treatment process backwas	ash Wastewater sh wastewater- parameter(s), l	location(s), and frequency in
	al and the accepted annual m	
General chemical and physical parameters listed in the Guidelines for Monitoring Pubic Drinking Water Supplies	Raw and treated water	Minimum annually
Manganese	 Raw water (prior to treatment) Entering the distribution system Distribution system 	Quarterly * The Approval Holder may request a reduction in sample frequency if it is determined that manganese is not a parameter of concern for the water supply.
Guidelines for Canadian Dri		
All health-related parameters in the Guidelines for Canadian Drinking Water Quality	Raw and treated water Every 5 years unless system assessment rep or source water protect plan requires more frequent monitoring.	
Source Water Protection		
Parameters as per the source water protection monitoring program	Locations and frequencies in source water protection more	

APPENDIX H

Approval to Withdrawal

NOVASCOTIA Environment Environmental Monitoring and Compliance

2nd Floor 136 Exhibition Street Centville, Nova Scotia Canada B4N 4E5

902 679-6086 т 902 679-6186 ғ www.gov.ns.ca

Our File Number: 95100-30KEN-2014-090991

October 9, 2015

Municipality of the County of Annapolis Attn.: James Jenner P.O. Box 100 Annapolis Royal, NS BOS 1A0

RE: Approval for Water Withdrawal/Storage of Water - Reservoir and Lake Cady Municipality of the County of Annapolis Application No. 2014-090991 PID # 05049655, Clementsvale, Annapolis County, Nova Scotia

Enclosed please find Approval Number 2014-090991 for the withdrawal and storage of surface water from the watercourse known as; "reservoir" and Lake Cady, located at or near Clementsvale, Annapolis County, Nova Scotia.

Based on the projected withdrawal volumes, you will be invoiced an annual user fee. You will also be invoiced for an Annual Approval Administration Fee. These fees are subject to review and adjustment by the Minister and you will be invoiced annually.

This approval or a copy is to be kept on-site at all times. All personnel involved in the project must be made fully aware of the terms and conditions of this approval. The terms and conditions are shown as attached and it is your responsibility to ensure that they are followed. Failure to comply with the terms and conditions is an offence.

It is your duty to advise the Department of any new and relevant information respecting any adverse effect that results or may result from the approved Activity, which comes to your attention after the issuance of the approval. This is required under Section 60 of the *Environment Act*.

If the Activity is altered, extended or modified beyond the description given in this approval, please reapply as a new approval may be required.

Despite the issuance of this Approval, the Approval Holder is still responsible for obtaining any other authorization which may be required to carry out the Activity, including those which may be necessary under provincial, federal or municipal law. Should you have any questions, please contact Lynsey Crowell at Western Region, Kentville Office at (902) 679-6086.

Yours truly, KOKA lenge Jennifer Lonergan

District Manager

cc Pauline Herron, Environment, Kentville Office Lisa Paon, DFO

-2-

APPROVAL

Province of Nova Scotia Environment Act, S.N.S. 1994-95, c.1, s.1

APPROVAL HOLDER:

Municipality of the County of Annapolis.

APPLICATION NO:

<u>2014-090991</u>

EXPIRY DATE:

October 1, 2025

Pursuant to Part V of the *Environment Act*, S.N.S. 1994-95, c.1, s.1 as amended from time to time, approval is granted to the Approval Holder subject to the Terms and Conditions attached to and forming part of this Approval, for the following Activity:

Water withdrawal/storage of water at the watercourse known as Lake Cady (PID 05196050) and Reservoir (PID 05049655) at or near Clementsvale, Annapolis County, in the Province of Nova Scotia.

Administrator

Effective Date

TERMS AND CONDITIONS OF APPROVAL

Nova Scotia Environment

Approval Holder:	Municipality of the County of Annapolis	
Project:	Margaretsville Municipal Water Supply Water withdrawal/storage of water Lake Cady & Reservoir	
Site:	Clementsport Road Clementsvale, Annapolis County	
PID:	05049655 & 05196050	
Application No:	2014-090991	
File No:	95100-30-KEN-2014-090991	
Average rate of with	Irawal: 700,000 litres per day (averaged over 30 days)	
Maximum rate of wit	ndrawal: 1,125,000 litres per day (over a 3 day period)	

Reference Documents:

- Application and supporting documentation received September 4, 2014
- Report entitled "Water Withdrawal Report for Community of Cornwallis Lake Cady, Annapolis County, Nova Scotia" received July 27, 2015.
- Various communication in file dated up to October 7, 2015.

1. Definitions

- a. "Act" means the *Environment Act* S.N.S. 1994-1995, c.1 and includes all regulations made pursuant to the Act.
- b. "Department" means the Western Region, Kentville Office, of Nova Scotia Environment.
- c. "Facility" means the water withdrawal and associated works.

- d. "Minister" means the Minister of Nova Scotia Environment.
- e. "Qualified person" means, for the purposes of this Approval, a registered professional engineer licensed to practice in Nova Scotia or a person with hydrology training and experience.

2. Scope of Approval

- a. This Approval (the "Approval") relates to the Approval Holder and their application and supporting documentation, as listed in the reference documents above, to withdraw and store water from Lake Cady and Reservoir at or near Clementsvale, Annapolis County, Nova Scotia.
- b. The Facility shall be operated as outlined in the application for approval dated September 4, 2014 and supporting documentation.

3. General

- a. The Approval Holder shall withdraw water in accordance with provisions of the:
 - i. Environment Act S.N.S. 1994-1995, c.1; s.1 (the "Act") as amended from time to time
 - ii. Regulations, as amended from time to time, pursuant to the above Act;
 - Nova Scotia Watercourse Alteration Specifications (1997) Legal, General,
 - Standards, Policies, or Guidelines as amended from time to time issued by Nova Scotia Environment;
- b. The Activity shall be conducted in accordance with the details and specifications in the Application and attached appendices and the reference documents. If there is a discrepancy between the reference documents and these terms and conditions, the terms and conditions of this approval shall apply.
- c. Any request for renewal or extension of this Approval is to be made in writing, to the Department, at least ninety (90) days prior to the Approval expiry.
- d. The Minister or Administrator may modify, amend or add conditions to this Approval at anytime pursuant to Section 58 of the Act.

- 3 -

e.

f.

- This Approval is not transferable without the consent of the Minister or Administrator.
 - (i) If the Minister or Administrator determines that there has been noncompliance with any or all of the terms and conditions contained in this Approval, the Minister or Administrator may cancel or suspend the Approval pursuant to subsections 58(2)(b) and 58(4) of the Act, until such time as the Minister or Administrator is satisfied that all terms and conditions have been met.
 - Despite a cancellation or suspension of this Approval, the Approval Holder is at all times subject to the penalty provisions of the Act and regulations.
- g. The Approval Holder shall notify the Department prior to any proposed extensions or modifications of the Activity including, but not limited to, an increase in withdrawal rates or the addition of production wells. The Approval holder shall obtain written authorization or amendment from the Administrator before implementing any change that would not comply with the Terms and Conditions of this Approval.
- h. The Approval Holder shall immediately notify the Department of any incidents of non-compliance with this Approval.
- i. Pursuant to Section 60 of the Act, the Approval Holder shall submit to the Administrator any new and relevant information respecting any adverse effect that actually results, or may potentially result, from any activity to which the Approval relates and that comes to the attention of the Approval Holder after the issuance of the Approval.
- j. The Approval Holder shall bear all expenses incurred in carrying out the environmental monitoring required under the terms and conditions of this Approval.
- k. Unless written approval is received otherwise from the Administrator, all samples required by this Approval shall be analysed by a laboratory that meets the requirements of the Department's "Policy on Acceptable Certification of Laboratories" as amended from time to time.
- I. The Approval Holder shall submit any monitoring results or reports required by this Approval to the Department. Unless specified otherwise in this Approval, all monitoring results shall be submitted within 30 days following the month of monitoring.

CBCL

- m. The Approval Holder shall ensure that this Approval, or a copy, is kept on Site at all times and that personnel directly involved in the Activity are made fully aware of the terms and conditions which pertain to this Approval.
- N. Within one month of the issuance of this Approval, the Approval Holder shall designate in writing, to the Department, a contact for this Approval. If the contact should change, the Approval Holder shall immediately notify the Department in writing.
- o. The Approval Holder shall, upon receipt of an invoice from the Minister of Nova Scotia Environment stating the amount owing, pay to the Minister of Finance the amount stipulated in said invoice. Said amount shall be in accordance with the schedule of fees established by the Minister of Nova Scotia Environment, as may be revised from time to time.
- p. The failure of the Minister to insist upon a strict performance of a Term and Condition contained in this Approval shall not be deemed a waiver of any rights or remedies that the Minister may have and shall not be deemed a waiver of any subsequent breach of the Terms and Conditions of this Approval.
- q. This Approval does not give sole or exclusive rights to any watercourse or water resource, and the Minister reserves the right to use and to allow others to use the watercourse or water resource and the water therein.
- r. The Approval Holder may not alter or use the watercourse or water resource so as to:
 - prejudice any riparian or other rights, should any such rights exist, of a person lawfully in possession lands abutting the watercourse or water resource;
 - ii. cause damage or nuisance to adjacent or abutting lands.
- s. The Approval Holder shall not place a pecuniary value on or claim any pecuniary value for the rights granted by this Approval, over and above the amounts, if any, paid to the Minister by the Approval Holder for the rights.
- t. The Approval Holder shall maintain a culvert, bridge, dam, sluice, flume, conduit, well or other structure built or used in or on the watercourse or water resources so that it does not cause an adverse effect. This conditions survives the expiry or cancellation of this Approval.
- u. The Approval Holder shall conform to a direction of the Minister or an Administrator concerning the maintenance or rehabilitation of a

watercourse or water resource or the maintenance, rehabilitation or removal of a culvert, bridge, dam, sluice, flume, conduit, or structure used or maintained in and on the watercourse or water resource. The Approval Holder shall, pursuant to an Approval where required, remove a culvert, bridge, dam, sluice, flume, conduit, pump or other structure and any equipment or personal property built, used or maintained in and on the watercourse or water resource at the end of the useful life of the culvert, bridge, dam, sluice, flume, conduit or structure. In the event the Approval Holder fails to remove a culvert, bridge, dam, sluice, flume, conduit or other structure or equipment or personal property, the Minister may, without any liability, remove or demolish the same in whatever manner the Minister deems necessary and the Approval Holder shall reimburse the Minister for all expenses and costs of such removal or demolition. This condition survives the expiry or cancellation of this Approval.

- v. The Approval Holder shall indemnify and save harmless the Minister and an employee, servant or agent of the Department against any loss, cost or damage resulting from the activities performed pursuant to this Approval. Such indemnity shall include, but not be restricted to, all losses, costs or damages occasioned by the improper or faulty relocation of a watercourse or water resource or the improper or faulty construction of, repair, alteration or addition to any culvert, bridge, dam, sluice, flume, conduit or other structure in or on the watercourse or water resource, or by any trespass, negligence or wilful act of the Approval Holder or any employees, agents, contractors or guests of the Approval Holder.
- w. This Approval shall enure to the benefit of and be binding upon the Minister, the Minister's successors, assigns and authorized representatives and upon the Approval Holder, and the heirs, administrators, executors and assigns of the Approval Holder.
- x. The Minister and all persons designated as Inspectors pursuant to the Environment Act shall have free access at all times to the Activity and to land under control of the Approval Holder to ensure these Terms and Conditions are being fulfilled.

4. Site Specific Terms and Conditions

- a. The average water withdrawal rate from the "Reservoir" shall not exceed 700,000 litres per day (averaged over 365 days).
- b. The maximum withdrawal rate shall not exceed 1,125,000 litres per day (averaged over 3 days).

- 6 -

C.

i.

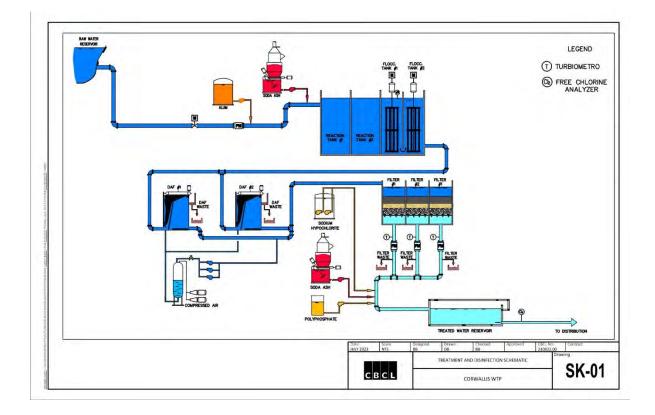
- A water flow metre shall be installed, maintained, and monitored separately for each withdrawal location.
- d. The approval holder shall keep daily withdrawal records for each withdrawal location. Data is to be tabulated and also available in electronic format. Records should be available upon request by the Department.
- e. Nova Scotia Environment shall not be held responsible for any water quality or quantity problems that may be encountered by the proponent.
- f. If production causes interference problems with any existing supplies or water resource, the Department shall be notified immediately, and the withdrawal rate shall be reduced and/or the problem rectified to the satisfaction of the Department.
- g. Based on DFO letter dated September 14, 2015, the following terms and conditions apply:
 - The Approval Holder shall ensure that an ecological maintenance flow of 0.05 cubic meters per second (m3/s) during the summer low flow period (July through September) and 0.34 m3/s during the remainder of the year are required immediately downstream of the outlet of the "Reservoir".
 - ii. By **July 1, 2016** the Approval Holder shall install a gauge in the channel immediately downstream of the Reservoir outlet.
 - iii. The Approval Holder shall develop a stage discharge curve to establish the relationship between the level of the watercourse and the rate of flow. The stage discharge curve shall be submitted to NSE and DFO for review by **November 30, 2016.** If additional information is required to better define the relationship between water level and rate cf flow, the Approval Holder will be notified by March 31, 2017.
 - iv. The Approval Holder shall determine the watercourse level that corresponds to the ecological maintenance flows based on the stage discharge curve. These watercourse levels shall be used to establish two benchmarks at each gauging sites: one for summer low flow and one for the remainder of the year. These benchmarks should accurately reflect the ecological maintenance flows and may need to be recalibrated if site conditions change.
 v. The Approval Holder shall monitor and record the watercourse
 - The Approval Holder shall monitor and record the watercourse levels **twice a week** to ensure that water withdrawals do not reduce flow levels below the benchmarks. Monitoring frequency should be increased as the water level approaches the

- 7 -

vi.

benchmarks. The records shall be made available to NSE upon request and shall be maintained for the duration of the Approval. If the watercourse levels falls below the benchmark NSE and

- DFO must be contacted immediately to discuss options.
- vii. The water intake shall be screened to ensure fish are not impinged or entrained.


For questions related to the above terms and conditions please contact DFO at (902)426-3909 and quote file # 15-W-312.

- h. This approval does not allow for the Approval Holder to withdrawal or divert water out of Lake Cady via the underwater pipe. In the event that the valve that controls the outlet of Lake Cady needs to be turned on the Department must be notified as this approval may have to be amended.
- I. The Approval holder shall maintain all structures in accordance with the Canadian Dam Association Guidelines.
 - i) The Approval holder shall retain the services of a qualified consulting engineering firm to oversee compliance with the Canadian Dam Association Guidelines.
 - ii) The Approval holder shall update Emergency Preparedness Plans on a regular basis. The Emergency Preparedness Plan must at a minimum be reviewed annually to ensure that the procedures, contacts and notification process are still valid.

APPENDIX I

Schematic of the Treatment & Disinfection Process

APPENDIX J

Water Protection Zone Mapping in GIS Format for NSECC

To be provided separately.

APPENDIX K

Terms of Reference Checklist

Nova Scotia Environment & Climate Change System Assessment Report Terms of Reference Checklist

PART I Introduction

This checklist was prepared as a companion document to the Terms of Reference for System Assessment Reports for Municipal Drinking Water Systems, 2022. For detailed information on each of the submission requirements below, please consult the source document. For ease of reference, reports should follow the format and sequence of the checklist below. Where possible, section references should follow section and subsection numbering conventions used in the checklist.

Where data is required to be submitted for 'the most recent calendar year', Approval Holders may submit 12 consecutive months of data within a 2-year period from the date the system assessment report is due.

Nova Scotia System Assessment Report Terms of Reference Checklist / Part I

PART II Characterization of the Water Source

2.0 Source Water Characterization

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
2.1	Source Description and Schematic*				
í,	Describe the water source(s) used to meet water consumption demand.	V		2.1	3
ij.	Describe any sources that are used as back-up supplies.		7	2.1.1	4
iii.	Identify sources on a map.	1		App.B	App.B
iv.	Document what precautions are required for back-up supplies.		1		-
v.	If a back-up supply is intended to be used without precautions, verify that it meets the Nova Scotia Treatment Standards for Municipal Drinking Water Systems or if the back-up supply is connected to an adjoining municipality, document the name of the Municipal Public Drinking Water Supply to which it is connected.		7	*	-
vi.	For Municipal Public Drinking Water Supplies that purchase water from an adjoining system, identify system connections on a map.		V		*
vii.	Document the name of the municipal public drinking water supply(s) that water is purchased from and proceed to section 2.3.		V		10

Nova Scotia System Assessment Report Terms of Reference Checklist / Part II

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
2.2	Microbial Risks				-
2.2.1	Surface Water Sources				
i.	Summarize microbial risks and water quality variability of the surface water source(s).		1	2.2.1	4
ii.	Submit raw water quality data for total coliforms and E. coli, as well as Cryptosporidium and Giardia if available, for the most recent calendar year as an Appendix.		V	2.2.1	4
2.2.2	Groundwater Sources				
i.	Verify that all individual wells have been classified in accordance with the Protocol for Determining Groundwater Under the Direct Influence of Surface Water.		V	-	
ii.	Summarize the GUDI status by individual well and identify at which step in the GUDI Protocol the well was categorized as GUDI or non-GUDI.		V	-	-
iii,	For wells that are no longer in use, identify if the well has been properly decommissioned or is being maintained as a back-up well or monitoring well.		V	÷	-
iv.	For GUDI wells, complete Table A.1 and verify that the GUDI classification has not changed based on the results of microscopic particulate analysis (MPA) testing required every two years.		V	+	2
v.	Verify that MPA samples were taken following a rainfall event in accordance with Step 3 of the GUDI Protocol (e.g., if there is a 15-day time-of-travel, then the well shall be sampled 15 days after a surface water event).		1	-	
vi.	Inspect the site(s) to verify that there are no changes to the surrounding area to warrant re-classification of the well(s).		4	÷	+

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	100	N/A	Section	Page #
vii.	 Recommend corrective action for wells: For which MPA test results indicate a change in GUDI classification. Where changes to the surrounding area have occurred to warrant reclassification of the well per the GUDI Protocol. Where any other concerns are identified. 		V		*
viii.	Submit raw water quality data for total coliforms and E. coli bacteria for the most recent calendar year as an Appendix.		8		
ix.	For GUDI wells, submit any raw water quality data for Cryptosporidium or Giardia (if available) for the most recent calendar year as an Appendix.			4	-

.4

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.				Page #
2.3	Chemical Risks	-			
2.3.1	Disinfection By-Products				
a) T	rihalomethanes (THMs)				
i.	Complete Table A.2 to summarize quarterly THM concentrations by sampling location.	7		App.A	App.A
ij.	 For non-GUDI systems that have had quarterly sampling reduced to annual sampling: Note the acceptance date for this reduction in sampling frequency. Modify Table A.2 to summarize annual results, including sampling date. 		V	*	-
iii.	If the locational running annual average for any sampling location exceeds the maximum acceptable concentration, recommend corrective actions.		7	2.3.1.1	6
iv.	 Verify that sampling locations are appropriate as follows: Are samples collected at the point(s) in the distribution system with the highest potential THM concentrations? Are an adequate number of sites sampled to represent exposure levels system-wide? 			2.3.1.1	6
V.	Identify THM sampling locations on a map of the distribution system.			App,C	App.C
vi.	Recommend sampling location/frequency changes if necessary.		7	2.3.1.1	6
b) H	aloacetic Acids (HAA5)			-	

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
i.	Complete Table A.3 to summarize HAA5 concentrations by sampling location.	1		App.A	App.A
ii.	For non-GUDI systems that have had quarterly sampling reduced to annual sampling: • Note the acceptance date for this reduction in sampling frequency. • Modify Table A.3 to summarize annual results, including sampling date.		V		~
ш.	If the locational running annual average for any sampling location exceeds the maximum acceptable concentration, recommend corrective actions.		7	2.3.1.2	6
iv.	 Verify that sampling locations are appropriate as follows: Are samples collected at the location(s) where historical data show the highest HAA5 concentrations? If historical data are not available, are HAA5 concentrations monitored in the middle and extremities of the distribution system to determine the highest concentrations? Are samples collected in areas where disinfectant residuals are significantly lower than the system average because of long residence time? In systems with booster chlorination stations and water tanks/reservoirs, are HAA5 concentrations monitored downstream of these components? Are an adequate number of sites sampled to represent system-wide exposure levels? 			2.3.1.2	6
v.	Identify HAA5 sampling locations on a map of the distribution system.			App.C	App.C
vi.	Recommend sampling location/frequency changes if necessary.		V	2.3.1.2	6

c) ()	ther Disinfection By-Products (DBPs)			
i.	Identify which other DBPs are required to be monitored and compare this to existing monitoring (see Table 1 in the Terms of Reference).	V	2.3.1.3	6
ü.	Verify that sampling locations are appropriate.	1	2.3.1.3	6
iii.	Identify sampling locations on a map of the distribution system.	7	2.3.1.3	6
iv.	Recommend sampling location/frequency changes if necessary.	V	2.3.1.3	6
v.	Summarize concentrations for the most recent calendar year as an Appendix.	7	2.3.1.3	6
vi.	Recommend corrective actions if any maximum acceptable concentration is exceeded.		2.3.1.3	6
2.3.2	Lead and Corrosion Control			

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
Ĭ.	 Verify that sampling locations and frequencies for lead are appropriate as follows: Does the residential sampling program meet the minimum requirements as outlined in the Lead and Copper Management Requirements – Municipal Public Drinking Water Supplies or as otherwise accepted by the Department? Are residences suspected to be at the highest risk for lead targeted in the residential sampling program? 	N		2.3.2.1	6
ii.	Recommend sampling location/ frequency changes if necessary.	N		2.3.2.1	6
iii.	Summarize and append lead and copper concentrations by sampling location and sample protocol used for the most recent calendar year.			2.3.2.1	6
iv.	 Summarize corrective actions taken when residential sample results exceeded the maximum acceptable concentration, as outlined in the Lead and Copper Management Requirements – Municipal Public Drinking Water Supplies. Are the corrective actions taken in line with the minimum requirements outlined in the Lead and Copper Management Requirements – Municipal Public Drinking Water Supplies or as otherwise accepted by the Department? 	N		2.3.2.1	7
v.	Recommend program improvements, where applicable.	8		2.3.2.1	7
b) C	orrosion Control				
i,	Review the corrosion control program: • Does one exist?		7	2.3.2.2	8
	 Does it include the minimum monitoring requirements as outlined in the Guidelines for Monitoring Public Drinking Water Supplies – Part 1? 		7	2.3.2.2	8

	firm all applicable information has been submitted to the Department. cate the section and page number where the information is documented.	Yes	N/A	Section	Page #
	 Does it include action limits for the corrosion monitoring parameters that trigger follow-up? 		7	2.3.2.2	8
ii.	Summarize the water quality results of the corrosion control program for the most recent calendar year as an Appendix.		7	App.D	App.D
iii.	Recommend corrective actions if concerns are identified from the review of the corrosion control program.	1		2.3.2.2	8
đ	If a corrosion control program does not exist, document why, including water quality results that demonstrate non-corrosivity of the water, or recommend the need for a more comprehensive corrosion control program. Note: The Langelier Index is no longer considered an adequate measure of corrosivity. The submission of water quality results based solely on a positive Langelier Index will not			2.3.2.2	8
1	be accepted as justification for not having a corrosion control program. Note: The Engineer is not required to develop a corrosion control program as part of the				
5	System Assessment Report.				
2.3. *Mu	System Assessment Report. 3 Guidelines for Canadian Drinking Water Quality* nicipalities that only distribute water purchased from another Municipal Public Drinking Water quality results from the Approval Holder of the Municipal Public Drinking Water Supply the Supply the Supply of the Municipal Public Drinking Water Supply the Supply of the Municipal Public Drinking Water Supply the Supplementation of the Municipal Public Drinking Water Supply the Supplementation of the Municipal Public Drinking Water Supply the Supplementation of the Municipal Public Drinking Water Supply the Supplementation of the Municipal Public Drinking Water Supply the Supplementation of th				
2.3. *Mu	3 Guidelines for Canadian Drinking Water Quality* nicipalities that only distribute water purchased from another Municipal Public Drinking Wa	Water Supply may that treats the			App.A

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
iii.	Discuss any trends for parameters with detectable concentrations.	V		2.3.3	8
iv.	Include laboratory results from the last round of sampling as an Appendix.	1		App.E	App.E
v.	Identify when the next round of sampling is scheduled to occur.			2.3.3	8
vi.	Recommend corrective actions if any MACs are exceeded.		7	2.3.3	8
vii.	Recommend any changes to the monitoring program (frequency/location) if sampling is inappropriate for cyanobacterial toxins, pesticides or other parameters with enhanced monitoring that was recommended for parameters with detectable concentrations.	V		2.3.3	8
234	Guidelines for Monitoring Public Drinking Water Supplies				
	oundennes for wonttoring rubic brinking water supplies				
i.	Verify that the parameters in the Guidelines for Monitoring Public Drinking Water Supplies (see Table A.5) have been analyzed as required in all raw water sources and treated water and document the sampling dates.			App.A	App.A
	Verify that the parameters in the Guidelines for Monitoring Public Drinking Water Supplies (see Table A.5) have been analyzed as required in all raw water sources and	8		Арр.А 2.3.4	App.A 9

	firm all applicable information has been submitted to the Department. cate the section and page number where the information is documented.	Yes	N/A	Section	Page #
iv.	Include laboratory results from the last round of sampling as an Appendix.	N		App.F	App.f
v.	Identify when the next round of sampling is scheduled to occur.	V		2.3.4	9
vi.	If any MACs are exceeded, recommend corrective actions.		1	2.3.4	9
vii.	Recommend any changes to the monitoring program, sampling location/frequencies if necessary.	8		2.3.4	9
Th	5 Source Water Protection Plan Monitoring s section is not applicable for municipalities that only distribute water purchased from and supply.	other M	unicipal	Public Dr	inking
i.	For Approval Holders monitoring any other chemical parameters for source water protection purposes, summarize the parameters, their sampling frequency, and their measured concentrations.	V		2.3.5	10
L IL	protection purposes, summarize the parameters, their sampling frequency, and their			2.3.5 2.3.5	10 10

	cate the section and page number where the information is documented.	_			-
	6 Cyanobacteria* section is only applicable to surface water sources.				
i.	Identify whether the source of supply has been impacted by cyanobacterial blooms.		4	2.3.6	10
II.	Summarize and append any results for cyanobacterial blooms through visual observation and/or confirmation from laboratory results including dates.		4	2.3.6	10
iii.	Discuss any corrective actions taken when cyanobacteria have been detected in the source water.		7	2.3.6	10
iv.	Discuss the treatment capability of the facility to remove microcystin toxins and identify any vulnerabilities.		V	2.3.6	10
v.	Provide recommendations if necessary.	V		2.3.6	10

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
	Filter Backwash Water* applicable for municipalities that only distribute water purchased from another Municipa	l Public	Drinking	g Water Su	pply
i.	Document the impact on the raw water source if water from the filter backwash treatment system is discharged upstream of the raw water intake.			2.4	11
ii.	Provide recommendations if this discharge impacts the source.		1	2.4	11
*Not	applicable for municipalities that only distribute water purchased from another Municipa				
i.	Compile existing Water Withdrawal Approvals and include copies of these as an		Drinkin	g Water Si 2.5	upply
i. II.					11
	Compile existing Water Withdrawal Approvals and include copies of these as an Appendix.			2.5	

	Source Water Protection Plan* applicable for municipalities that only distribute water purchased from another Municipa	l Public	Drinkinş	g Water Si	ipply.
i.	Identify the source water protection zone(s) on a map.	7		App.C	App.C
ii.	Submit the source water protection zone(s) in GIS format to the Department. If zones are not available in GIS format, contact the Watershed Planner for your supply.			App. J	App. J
iii,	Summarize the status of the source water protection plan and implementation schedule.	~		2.6	12
iv.	Document the dates of the last two SWPP meetings.		V	2.6	12
v.	Note the status of meeting actions and/or SWPP deliverables.		7	2.6	12
vi.	Make recommendations to address any concerns identified by the advisory committee or the source water protection planning process.	1		2.6	12
2.7	Conclusions and Recommendations				
i.	Refer to the Terms of Reference.	7		2.7	13

PART III Treatment Processes, Facilities and Equipment

3.0 Evaluation of Treatment Processes, Facilities and Equipment

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
	Treatment Processes				
i.	Compile existing Approval(s) to Operate and include copies of these as an Appendix. For Approval Holders that only distribute water purchased from another Municipal Public Drinking Water Supply, document the name of the treatment facility, and proceed to section 3.2.			3.1	16
3.1.	1 Treatment Process Schematic				
i.	Provide a schematic of the treatment process from the source to treated water entering the distribution system.	V		3.1	16
3.1.	2 Turbidity Levels and Associated Criteria				
a) S	arface Water				
i.	Verify that filtration technologies are meeting specified turbidity limits to receive the assigned log removal credits outlined in Table C2 of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems by either Option 1 or Option 2.		ø	3.1.2.1	17
ii.	Submit individual filter effluent turbidity values for the most recent calendar year by month (Option 1) or by the time interval graphed (Option 2).		5	3.1.2.1	18
iii.	Recommend corrective actions if the supply does not meet stipulated turbidity limits.	V		3.1.2.1	18

Nova Scotia System Assessment Report Terms of Reference Checklist / Part III

	rm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
iv.	For Municipal Public Drinking Water Supplies with cartridge filters assigned log reduction credits for protozoa, provide the highest recorded individual filter differential pressure reading for each month of the most recent calendar year.		V	- 41-	4
v.	Review the standard operating procedures (SOPs) for the filtration process:		7		
	 Have control limits been set to alarm and notify operators of issues related to the filtration process? 				
	 Have procedures been developed to remove a filter or membrane unit from service before turbidity or differential pressure (i.e., for cartridge filters assigned log reduction credits) exceeds stipulated values? 				
	 Have procedures been implemented and communicated to all operations staff? 				
	Have procedures been documented in the operations manual?				
vi.	Inspect the filtration process to verify that continuous on-line turbidity measurements are taken and recorded for each individual filter at a minimum of once every five minutes.	N		3.1.2.1	18

Confirm all applicable information has been submitted to the Department. Indicate the section and page number where the information is documented.	Yes	N/A	Section	Page #
 vii. Inspect the on-line turbidimeters: Do they have the required range and accuracy to measure turbidity levels? Are they in good working order? Do they have a maintenance and quality assurance/calibration program? 	N		3.1.2.5	19
viii. Inspect the filtration process to verify that there are a minimum of two filters.	1		3.1.2.6	19
ix. Document if the maximum day flow can be met with the largest filter out of service. Note: If the facility is unable to meet maximum day flows with the largest filter out of service, improvements to meet the Treatment Standards may be deferred to a future expansion provided SOPs are in place to minimize filter rate changes and spikes in turbidity which can result in filter breakthrough.			3.1.2.6	19
x. Make recommendations to address any concerns identified by the review of the filtration SOPs, inspection of on-line turbidimeters, and filter redundancy.	V		3.1.2	18

b) (JUDI Wells			
i.	Verify that natural filtration is achieving specified turbidity limits to receive the assigned log removal credits outlined in Table C2 of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems by either Option 1 or Option 2.	5	×	14
ii.	Submit individual GUDI well turbidity values for the most recent calendar year by month (Option 1) or by the time interval graphed (Option 2).	V	-	÷
iii.	For GUDI wells that do not meet stipulated turbidity limits, contact the Department to determine what requirements shall apply.	1	-	
iv.	Inspect the site(s) to verify that continuous on-line turbidity measurements are taken for each individual GUDI wellhead at a minimum of once every five minutes.	1	-	-
v.	 Inspect the on-line turbidimeters: Do they have the required range and accuracy to measure turbidity levels? Are they in good working order? Do they have a maintenance and quality assurance/calibration program? 	N	1 E .	
vi.	Make recommendations to address any concerns identified by the inspection of the on-line turbidimeters.	1		-

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
c) N	on-GUDI Wells				
i.	Summarize turbidity levels in non-GUDI wells by either Option 1 or Option 2.		V	÷	-
ïi.	Note if measurements are by daily grab samples or continuous on-line turbidimeters.		1	+	-
iii.	Submit non-GUDI system turbidity for individual wells or combined flow for the most recent calendar year by month (Option 1) or by the time interval graphed (Option 2).		V	*	+
iv.	For non-GUDI wells that do not meet stipulated turbidity limits, contact the Department to determine what requirements shall apply.		1	-	÷.
v	 Where continuous measurements are taken, inspect the on-line turbidimeters: Do they have the required range and accuracy to measure turbidity levels? Are they in good working order? Do they have a maintenance and quality assurance/calibration program? 		V	-	-
vi.	Where grab samples are taken, inspect the monitoring equipment, SOPs, maintenance, and quality assurance/calibration program to ensure equipment is in good working order and measurements are appropriate.		1	-	-
vii.	Make recommendations to address any concerns identified by the inspection of on-line turbidimeters or grab sample protocols.		1	-	-

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.1.	3 Membrane Filtration – Additional Requirements				
L.	Complete Table B.1 to verify that each individual membrane treatment unit that is used for pathogen reduction credits is free of any integrity breaches and determine its log removal value using pressure-based testing.		1	- 10- 1	1
ii.	Make recommendations to address any concerns identified.		1	-	4
iii.	For Municipal Public Drinking Water Supplies with integrated membrane systems, summarize the process used to verify the rejection rate remains adequate for organics removal.			÷	÷
iv.	Make recommendations to address any concerns identified.		5	-	4.
3.1.	4 Primary Disinfection				
i.	Document how many inactivation log credits are required by the disinfection process for each target microorganism (e.g., protozoa and/or viruses).			3.1.4	20
ii.	Discuss how disinfection is achieved (e.g., chemical disinfectants, UV or both).	4		3.1.4	20

a) C	hemical Disinfection (CT Concept)				
i.	Where chemical disinfectants are used, provide a schematic of the primary disinfection process including, but not limited to:	4		3.1.4.1	20
	• Tank(s) dimensions.				
	 Baffling configuration and assumed baffling factor. 				
	 Water level operating range, highlighting the low level. 				
	 Disinfection type (e.g., free chlorine, chlorine dioxide, ozone). 				
	• Minimum disinfectant concentration at the CT control point.				
	Minimum water temperature.				
	 Maximum pH of the water for free chlorine or optimum pH for chlorine dioxide or ozone. 				
	 Maximum flow and minimum retention time - if the tank used to achieve CT is subject to water level fluctuations, verify if the inflow/outflow represents the maximum flow condition. 				
ii.	Calculate the design CT.	1		3.1.4.1	21
ii.	Verify that operational conditions remained within the design range for achieving CT at all times during the most recent calendar year.	1		3.1.4.1	21
iv.	Where operational conditions went outs ide the design range, identify the cause, document the corrective actions taken and verify that CT was calculated during every such event.		1	3.1.4.1	21
v.	Make recommendations to address any concerns identified.		1	3.1.4.1	21

ndic	ate the section and page number where the information is documented.	-	-		
i.	Where UV disinfection is used, provide a schematic of the primary disinfection process including, but not limited to:		4	3.1.4.2	21
	• Unit manufacturer and model.		1		
	Validation standard.				
	Maximum flow.				
	• Minimum intensity at the end of lamp life.				
	• Minimum transmittance at the end of lamp life.				
	Correction for water temperature.				
	 Maximum concentrations for water quality parameters that promote fouling (e.g., iron, manganese, hardness). 				
	• Sleeve cleaning method.				
ii.	Verify that the unit has been designed to deliver a UV dose of 40 mJ/cm ² or Department accepted alternate dose. Specify the alternate dose, if applicable.		V	3.1.4.2	21

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Paget
ili.	Verify that the following conditions were met at all times during the most recent calendar year:		7	3.1.4.2	21
	• Was the intensity above the minimum required?				
	• Was the flow below the maximum allowed?				
	• Was the transmittance above the minimum required?				
iv.	Where operational conditions went outside the design range, identify the cause, document the corrective actions taken and verify that IT was calculated during every such event.		V	3.1.4.2	21
v.	Provide recommendations to address any concerns identified.		1	3.1.4.2	21
c) R	edundancy, Continuous Monitoring and Alerting				
i.	Inspect the primary disinfection process to verify the following:	¥		3.1.4.3	21
	• Are there a minimum of two primary disinfection units?				
	 Are the primary disinfection units sized to meet maximum day demand with one unit out of service? 				
	 Is on-line monitoring of the primary disinfection process in place with measurements taken and recorded at least once every five minutes? 				
	 Have control limits been set to alarm and notify operators that the primary disinfection process is not working properly? 				
	 Are protocols in place to prevent inadequately disinfected water from entering the distribution system? 				
ii.	Inspect the on-line instrumentation:	¥		3.1.4.3	21
	 Do they have the required range and accuracy to measure chlorine concentrations? 				

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
	Are they in good working order?Do they have a maintenance and quality assurance/calibration program?				i.
iii.	Provide recommendations to address any concerns identified.		1	3.1.4.3	21
d) S	tandard Operating Procedures				
i	Review the standard operating procedures for the disinfection process:	2		3.1.4.4	22
	 Do they specify the design ranges for achieving CT (e.g., temperature, disinfectant residual, flow, pH) or Π (e.g., intensity, flow, transmittance)? 				
	 Do they include notification and response procedures when operational conditions are outside CT or Π design ranges? 				
	 Do they include procedures to ensure the disinfection process is working properly? 			3.1.4.4	22
	 Do they include response procedures when the disinfection process is not working properly? 				
	• Have they been implemented and communicated to all operations staff?				
-	 Have they been documented in the operations manual? 	1.11			
ii.	Provide recommendations to address any concerns identified.			3.1.4.4	22
3.1.	5 Secondary Disinfection				
i.	Describe the secondary disinfection process.			3.1.5	22
ii.	Inspect the secondary disinfection process to verify the following:	V		3.1.5	22

	 ate the section and page number where the information is documented. Are on-line continuous chlorine residual monitors in place to measure chlorine residual entering the distribution system at least once every five minutes? Are the on-line chlorine residual monitors in good working order? 			
_	 Is there a maintenance and quality assurance/calibration program in place? 	 -	-	
iii.	Where free chlorine is used for both primary and secondary disinfection, refer to Section 3.1.4 and note if the chlorine dose is controlled by CT (primary disinfection) or distribution system residual maintenance (secondary disinfection).		3.1.5	22
iv.	Where UV light is used for primary disinfection to receive protozoa inactivation credits, calculate the design CT for virus inactivation credits.	-	4	÷
v.	Where UV light is used for primary disinfection to receive protozoa inactivation credits, verify that operational conditions remained within the design range for achieving CT for virus inactivation at all times during the most recent calendar year.	5	-	4

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page
vi.	Where operational conditions went outside the design range, identify the cause, document the corrective actions taken and verify that CT was calculated during every such event.		2	3.1.5	22
vii.	Provide recommendations to address any concerns identified.		1	3.1.5	22
3.1.	6 Other Critical Processes				
i.	Evaluate and inspect other critical processes against established standards and guidelines.		V	3.1.6	22
ii.	Recommend corrective actions where necessary.		1	3.1.6	22
3.1.	7 Waste Streams				
a) F	ilter-to-Waste				
i.	Describe the filter-to-waste process.		1	3.1.7	22
ii.	For chemically assisted filtration, verify that turbidity is less than or equal to 0.2 NTU before returning a filter to service.		V	3.1.7	22
iii.	Identify recommendations, if necessary, to meet the Nova Scotia Treatment Standards for Municipal Drinking Water Systems.		1	3.1.7	22
	ilter Backwash Water - Discharge Into A Freshwater Watercourse				
b) F					
b) F i.	Summarize treatment of the filter backwash water, if applicable, and identify the watercourse it is discharging into.		1	3.1.7.1	22

	ate the section and page number where the information is documented.			-	
iii.	Complete Table B.2.			3.1.7.1	22
	 Does sampling meet the minimum requirements as outlined in the Nova Scotia Treatment Standards for Municipal Drinking Water Systems? 		1	-	
	 Does effluent quality meet the discharge criteria stipulated in the Approval to Operate? 				
iv.	If the water quality does not meet the discharge criteria stipulated in the Approval to Operate or if there are no discharge criteria stipulated in the Approval to Operate, identify recommendations to meet the requirements specified in Part V – Management of Waste Streams of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems.		Ø	3.1.7.1	22
v.	Recommend corrective actions where necessary to address any concerns identified.		1	3.1.7.1	22

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
c) F	ilter Backwash Water – Discharge To Land Or Soil				
ì.	Summarize treatment of the filter backwash water, if applicable, and identify the location of discharge.		1	3.1.7.2	23
ii.	Identify whether the municipal public drinking water supply has a Discharge Management Plan in accordance with Part V – Management of Waste Streams of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems, as amended from time to time.		8	3.1.7.2	23
iii.	ldentify the effluent discharge criteria specified in the Approval to Operate, or the Department accepted Discharge Management Plan.		5	3.1.7.2	23
iv.	 Complete Table B.3. Does effluent quality meet the discharge criteria stipulated in the Approval to Operate, or the Department accepted Discharge Management Plan? 		V	3.1.7.2	23
v.	If the water quality does not meet the discharge criteria stipulated in the Approval to Operate, or the Department accepted Discharge Management Plan, identify recommendations to meet the minimum requirements for a plan specified in Part V – Management of Waste Streams of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems, as amended from time to time.			3.1.7.2	23
vi.	Identify operational, maintenance, and monitoring procedures in the Discharge Management Plan that do not meet the minimum requirements for a plan as specified in Part V – Management of Waste Streams of the Nova Scotia Treatment Standards for Municipal Drinking Water Systems, as amended from time to time.		V	3.1.7.2	23
vii.	Recommend corrective actions where necessary to address any concerns identified.		1	3.1.7.2	23

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
d) F	ilter Backwash Water – Discharge To A Marine Or Brackish Environment				
i.	Summarize treatment of the filter backwash water, if applicable, and identify the watercourse it is discharging into.		N	3.1.7.3	23
ji.	Identify any discharge criteria specified in the Approval to Operate.		1	3.1.7.3	23
ili.	 Complete Table B.4. Does effluent quality meet the discharge criteria stipulated in the Approval to Operate? 		5	3.1.7.3	23
iv.	Recommend corrective actions where necessary to address any concerns identified.		5	3.1.7.3	23
e) ()	ther Waste Streams				
i.	Review other waste streams and verify that they are being managed appropriately.		V	3.1.7.4	23
ïi.	Provide recommendations to address any concerns identified.		1	3.1.7.4	23

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.2	Distribution Water Quality				
3.2.	1 Chlorine Residual Levels				
i.	Review distribution system chlorine residuals for the most recent calendar year available.	1		3.2.1	23
ü.	Recommend corrective actions where residuals are routinely less than 0.20 mg/L or 0.40 mg/L (depending on the concentration specified in the Municipal Public Drinking Water Supply's Approval to Operate) where free chlorine is used (or less than 1.0 mg/L combined chlorine for chloraminated systems).		ø	3.2.1	23
Ш.	Inspect all distribution water storage tanks to verify that on-line continuous chlorine residual monitors are in place to measure chlorine residual at the storage tank outlet at least once every five minutes.	1		3.2.1	23
iv.	Inspect the on-line chlorine residual monitors to ensure that they are in good working order and that a maintenance and quality assurance/calibration program is in place.	2		3.2.1	23
v.	Recommend corrective actions where necessary.		1	3.2.1	23

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.2.	2 Microbiological Water Quality				
i.	Review total coliforms and E. coli results for the most recent calendar year available.			3.2.2	23
ii.	Discuss any presence of bacteria in the distribution system and identify recommendations where necessary.		5	3.2.2	23
iii.	Verify that sampling locations and frequencies meet the requirements of the Guidelines for Monitoring Public Drinking Water Supplies Part I, including any re- sampling required after the presence of bacteria is detected.			3.2.2	23
iv.	Identify sampling locations on a map of the distribution system.	2		App.C	App.C
v.	Recommend sampling location/frequency changes if necessary.		V	3.2.2	23

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.2.	3 Turbidity				
i.	Review distribution system turbidity results for the most recent calendar year available.	1		3.2.3	24
ii.	Verify that a protocol exists for investigating the cause of turbidity values above 5 NTU.			3.2.3	24
iii.	Discuss any values above 5 NTU and identify recommendations identified where necessary.		1	3.2.3	24

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.2.	4 Cross Connection Control Program				
i.	 Review the cross connection control program. Does it meet the minimum requirements as outlined in A Guide to Assist Nova Scotia Municipal Water Works Develop a Cross Connection Control Program, as amended from time to time. 			3.2.4	24
	 Are implementation timelines being met in accordance with the accepted plan? Provide an update on the status of the Cross Connection Control Program, including any modifications to the plan or implementation schedule, and a summary of the activities taken to achieve the goals and objectives of the program. 				4
ïi.	Provide recommend where necessary.	1		3.2.4	24
3.2.	5 Other Distribution System Monitoring/Programs				
ì.	Review any other distribution system monitoring or programs that are in place to deal with threats to distribution system integrity, including but not limited to infrastructure age, watermain breaks, leak detection, pressure transients, etc.		4	3.2.5	24
ü.	Provide recommendations where necessary.		4	3.2.5	24

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
3.3	Site Inspection				
i.	Conduct a site inspection to evaluate treatment processes, as well as other facilities and equipment as per the requirements outlined in section 3.3 of the Terms of Reference.	V		3.3	24
3.4	Conclusions and Recommendations				
i.	Refer to section 3.4 of the Terms of Reference.	V		3.4	24

PART IV Operations, Monitoring and Management

4.0 Review of Operations, Maintenance, Monitoring and Management

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
4.1	Operations and Maintenance				
j.	Review the comprehensive operations manual:	1		4.1	28
	• Does one exist?				
	• Is it current and up to date?				
	 Does it include SOPs, emergency notification procedures and contingency plans? 				
	• Is it available on site or an alternate location accepted by the Department?				
	• Are operations staff aware of its contents?				_
ü.	Evaluate the procedures an operator follows to identify any problem(s) with the water treatment and distribution process, determine the changes needed to correct the problem(s) and how adjustments to the processes are approved and performed as needed.	N		4.1	28
iii.	Verify that a maintenance program exists and is adequate to ensure the long-term viability of the Municipal Public Drinking Water Supply, including distribution system components.	N		4.1	28
iv.	Identify recommendations where necessary.	5		4.1	28
4 2	Monitoring and Reporting	-			-

Nova Scotia System Assessment Report Terms of Reference Checklist / Part IV

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
i.	Review the annual monitoring program to:	4		4.2	29
	• Does one exist?				
	• Is it current and up to date?				
	 Does it meet the minimum requirements as outlined in the Nova Scotia Treatment Standards for Municipal Drinking Water Systems and A Guide to Assist Nova Scotia Municipal Water Works Prepare Annual Sampling Plans? Are operations staff aware of its contents? 				
ii.	Identify the laboratories being used for water quality analyses.	2		4.2	31
iii.	Verify that the Municipal Public Drinking Water Supply is operating in accordance with the Policy on Acceptable Certification of Laboratories.	7		4.2	31
iv.	Review reporting requirements and verify that the Approval Holder has complied with the immediate, annual and ad hoc reporting requirements outlined in the Nova Scotia Treatment Standards for Municipal Drinking Water Systems.	V		4.2	31
v.	Review the most recent annual report and identify any concerns in the System Assessment Report.	2		4.2.1	31
vi.	Identify recommendations where necessary.	~		4.2.1	31

	rm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
4.3	Management				
i.	Review the number of certified operators and back-up personnel to verify that the municipal public drinking water supply is operating in accordance with Part I of the Water and Wastewater Facilities and Public Drinking Water Supplies Regulations.			4.3	31
8.	Complete Table C.1 to identify the operator(s) in overall direct responsible charge (ODRC) and summarize what protocols are in place during the absence of the operator(s) in ODRC. Note: The ODRC operator(s) must sign Table C.1.	N		App.A	App.A
ili.	Review the water quality goals that the Municipal Public Drinking Water Supply has and evaluate their plan(s) to accomplish or maintain these goals.			4.3	31
iv.	Identify recommendations where necessary.		-	4.3	31
4.4	Conclusions and Recommendations		1		
i.	Refer to section 4.4. of the Terms of Reference.	1		4.4	31

PART V REPORT SUBMISSION

5.0 Ability to Comply

Indic	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
-		1			97
i.	Summarize conclusions and identify all recommendations necessary to meet the Nova Scotia Treatment Standards for Municipal Drinking Water Systems.			5.1	33
ii.	Include preliminary cost estimates and an implementation schedule to address the above requirements. Costs shall be presented and prioritized with respect to public health risks.	N		5.1	36
1	Note: If the corrective action plan submitted to the Department varies from the risk-based approach documented in the System Assessment Report, written justification shall be included in the corrective action plan for varying the priority.				
Ш.	Highlight any obvious problems associated with the Municipal Public Drinking Water Supply that jeopardize treated water quality to the point that it no longer meets the health protection standards adopted by the Department.	N		5.1	37

Nova Scotia System Assessment Report Terms of Reference Checklist / Part V

	irm all applicable information has been submitted to the Department. ate the section and page number where the information is documented.	Yes	N/A	Section	Page #
5.2	Report Preparation				-
i.	Submit three (3) copies of the System Assessment Report to the Department and include a copy of this completed checklist.	V		5.2	
ii.	Engineer's Declaration (refer to section 1,4 of the Terms of Reference)		Ш	5.2	

CBCL

IL SH

Solutions today | Tomorrow 🕠 mind

